화학공학소재연구정보센터
Biotechnology Letters, Vol.38, No.4, 603-609, 2016
Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli
To achieve heterologous biosynthesis of dammarenediol-II, which is the precursor of dammarane-type tetracyclic ginsenosides, by reconstituting the 2,3-oxidosqualene-derived triterpenoid biosynthetic pathway in Escherichia coli. By the strategy of synthetic biology, dammarenediol-II biosynthetic pathway was reconstituted in E. coli by co-expression of squalene synthase (SS), squalene epoxidase (SE), NADPH-cytochrome P450 reductase (CPR) from Saccharomyces cerevisiae, and SE from Methylococcus capsulatus (McSE), NADPH-cytochrome P450 reductase (CPR) from Arabidopsis thaliana. Sequences of transmembrane domains were truncated if necessary in each of the genes. Different sources of SE/CPR combinations were tested, during which two CPRs were detected to be new reductase partners of McSE. When the gene encoding dammarenediol-II synthase was co-expressed with the 2,3-oxidosqualene expression modules, dammarenediol-II was detected and the production was 8.63 mg l(-1) in E. coli under the shake-flask conditions. Two E. coli chassis for production of dammarenediol-II were established which could be potentially applied in other triterpenoid production in E. coli when different oxidosqualene cyclases (OSCs) introduced into the system.