화학공학소재연구정보센터
Current Microbiology, Vol.70, No.5, 690-697, 2015
Protection Against 1,2-Di-methylhydrazine-Induced Systemic Oxidative Stress and Altered Brain Neurotransmitter Status by Probiotic Escherichia coli CFR 16 Secreting Pyrroloquinoline Quinone
Exposure to environmental pollutant 1,2-dimethylhydrazine (DMH) is attributed to systemic oxidative stress and is known to cause neurotropic effect by altering brain neurotransmitter status. Probiotics are opted as natural therapeutic against oxidative stress and also have the ability to modulate gut-brain axis. Pyrroloquinoline quinone (PQQ) is water-soluble, heat-stable antioxidant molecule. Aim of the present study was to evaluate the antioxidant efficacy of PQQ-producing probiotic E. coli CFR 16 on DMH-induced systemic oxidative damage and altered neurotransmitter status in rat brain. Adult virgin Charles Forster rats (200-250 g) were given DMH dose (25 mg/kg body weight, s.c.) for 8 weeks. Blood lipid peroxidation levels exhibited a marked increase while antioxidant enzyme activities of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase and glutathione peroxidase were found to be reduced in DMH-treated rats. Likewise, brain serotonin and norepinephrine levels displayed a significant decrease, whereas epinephrine levels demonstrated a marked increase in brain of these rats. PQQ-producing E. coli CFR 16 supplementation reduced systemic oxidative stress and also restored brain neurotransmitter status. However, E. coli CFR 16 did not show any effect on these parameters. In contrast, E. coli CFR 16:: vgb-gfp and E. coli CFR 16:: vgb-gfp vector exhibited some degree of protection again oxidative stress but they were not able to modulate neurotransmitter levels. In conclusion, continuous and sustained release of PQQ by probiotic E. coli in rat intestine ameliorates systemic oxidative stress and restored brain neurotransmitter levels.