Journal of Power Sources, Vol.311, 159-166, 2016
Improvement of irreversible behavior of SiO anodes for lithium ion batteries by a solid state reaction at high temperature
Herein, we describe a new simple method to improve the irreversible performance of a SiO anode during the initial cycle. The solid state-reacted SiO material was synthesized from bare SiO and lithium powders (three samples with weight ratios of 7:1, 8:1, and 9:1 were prepared) using a heat treatment process at 600 degrees C. Irreversible phases such as lithium silicates (Li4SiO4 and Li2SiO3) and Li2O were formed upon the solid state reaction with SiO. Electrochemical tests using half-cells were performed to confirm the effects of the solid state-reacted SiO material. The initial Coulombic efficiencies of the three samples were 82.12% (7:1), 79.81% (8:1), and 78.95% (9:1), which were far higher than that of a bare SiO cell (58.52%). Furthermore, the electrochemical performance of a full cell using a 7:1 wt% SiO anode and a lithium cobalt oxide cathode was evaluated. The full cell exhibited an initial Coulombic efficiency of 93.62% and a capacity retention of 74.70% after 15 cycles, which were also far higher than those of a bare SiO cell (66.4% and 55.72%, respectively). A comparison of the solid state-reacted and bare SiO electrodes demonstrated that the pre-formed irreversible phases prevented the consumption of lithium ions during the 1st cycle. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:SiO;Irreversible capacity;Irreversible phase;Lithium oxide;Lithium silicate;Lithium-ion secondary battery