화학공학소재연구정보센터
Langmuir, Vol.32, No.10, 2474-2481, 2016
Evaporation-Induced Self-Assembly of Ultrathin Tungsten Oxide Nanowires over a Large Scale for Ultraviolet Photodetector
Self-assembly of inorganic nanowires on a large scale directly on a substrate represents a great challenge. Starting from colloidally stable dispersions of ultrathin tungsten oxide nanowires, we successfully assemble the nanowires on a centimeter scale on flat or patterned substrates by a simple evaporation-induced self-assenibly method. The capillary flow generated during the evaporation is responsible for the assembly of the nanowires. The concentration of the nanowire dispersion has a significant influence on the self-assembly behavior. Well-aligned tungsten oxide nanowire thin films are achieved when the concentration of the dispersion is in the range from 0.5 to 3.0 mg/mL. While at higher concentrations disordered nanowire thin films with cracks are formed, lower concentrations do not result in the formation of a continuous thin film. A macroscopic device based on the self-assembled tungsten oxide nanowires is fabricated, exhibiting good performance for UV light detection. Our results may pave the road for integrating aligned ultrathin semiconductor nanowires into macroscopic devices for optoelectronic applications.