화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.36, 80-89, April, 2016
Preparation, thermal cure and ceramization of liquid precursors of SiC-ZrC
E-mail:
Liquid PEPSI-PZO, as precursor of SiC-ZrC multi-component ceramic, was prepared by facile reactive blending method, using phenylethynylpolysilane (PEPSI) as silicon and carbon source and polyzirconoxanesal (PZO) as zirconium source. The processing capability of PEPSI-PZO met the demands of Precursor-infiltration-pyrolysis technique (PIP) in ceramic composites fabrication. The thermal cure was realized at 130-330 °C by ethynyl polymerization and condensations. The thermal cure of PEPSI-PZO precursor was promoted by catalyst Ni(acac)2, and the curing initiation and curing peak temperatures decreased by 25 and 70 °C, respectively. Evidenced by ceramic yields and XRD results, the thermal pyrolysis was catalyzed by Ni(acac)2, (ceramic yield was improved by 5-10%). XRD and SEM-EDS results showed that SiC-ZrC by 1600 °C pyrolysis was highly crystalline, due to the occurrence of carbothermal reduction reaction. The liquid precursor of SiC-ZrC is an ideal candidate of low cost precursors for high-temperature ceramics and ceramic matrix composites.
  1. Xie CM, Chen MW, Wei X, Ge M, Zhang WG, J. Am. Ceram. Soc., 95(3), 866 (2012)
  2. Ji Z, Ye L, Tao X, et al., Mater. Lett., 71, 88 (2012)
  3. Ren ZH, Jin P, Cao XM, et al., Compos. Sci. Technol., 107, 129 (2015)
  4. Zhao S, Zhou X, Yu J, et al., Fusion Eng. Des., 89(2), 131 (2014)
  5. Lee SP, Cho KS, Lee HU, et al., IOP Conf. Ser. -Mater. Sci. Eng., IOP Publishing, 18(16), 162017 (2011)
  6. Wang H, Zhou X, Yu J, et al., Mater. Lett., 64(15), 1691 (2010)
  7. Nghiem QD, Kim DP, J. Ind. Eng. Chem., 12(6), 905 (2006)
  8. Kim DJ, Hong LY, Kim DP, J. Ind. Eng. Chem., 10(5), 821 (2004)
  9. Yan L, Cui W, Cui H, et al., Aerosp. Mater. Technol., 44(3), 6 (2014)
  10. Pizon D, Lucas R, Chehaide S, et al., J. European Ceram. Soc., 31(14), 2687 (2011)
  11. Zhao L, Jia D, Duan X, et al., J. European Ceram. Soc., 32(4), 947 (2012)
  12. Zhu S, Fahrenholtz WG, Hilmas GE, J. European Ceram. Soc., 27(4), 2077 (2007)
  13. Lu J, Hao K, Liu L, et al., Corrosion Sci., 103, 1 (2016)
  14. Rangaraj L, Divakar C, Jayaram V, J. European Ceram. Soc., 30(1), 129 (2010)
  15. Cheng W, Li X, Qiu T, et al., Nonferrous Met., 62(3), 26 (2010)
  16. Zimmermann JW, Hilmas GE, Fahrenholtz WG, et al., J. European Ceram. Soc., 27(7), 2729 (2007)
  17. Colombo P, Mera G, Riedel R, Soraru GD, J. Am. Ceram. Soc., 93(7), 1805 (2010)
  18. Pizon D, Lucas R, Foucaud S, Maitre A, Adv. Eng. Mater., 13(7), 599 (2011)
  19. Cai T, Qiu WF, Liu D, et al., J. Am. Ceram. Soc., 96(10), 3023 (2013)
  20. Liu D, Qiu W, Cai T, et al., Aerosp. Mater. Technol., 44(1), 79 (2014)
  21. Liu D, Qiu WF, Cai T, Sun YN, Zhao AJ, Zhao T, J. Am. Ceram. Soc., 97(4), 1242 (2014)
  22. Liu C, Li K, Li H, et al., J. Mater. Sci., 50(7), 2824 (2015)
  23. Wang XF, Liu JC, Hou F, Hu JD, Sun X, Zhou YC, J. Am. Ceram. Soc., 98(1), 197 (2015)
  24. Wang H, Gao B, Chen X, Wang J, Chen S, Gou Y, Appl. Organomet. Chem., 27(3), 166 (2013)
  25. Huang C, Wang M, Han W, Qiu W, Zhao T, J. Chin. Ceram. Soc., 43(9), 1177 (2015)
  26. Xie Y, Sanders TH, Speyer RF, J. Am. Ceram. Soc., 91(5), 1469 (2008)
  27. Ishikawa T, Yamamura T, Okamura K, J. Mater. Sci., 27(24), 6627 (1992)
  28. MacMillan SN, Harman WH, Peters JC, Chem. Sci., 5, 590 (2014)
  29. Hu HF, Chen ZH, Xiao JY, Zheng WW, J. Mater. Sci. Lett., 18(16), 1271 (1999)
  30. Jankovic B, Cupic Z, Jovanovic D, J. Iran. Chem. Soc., 11(6), 1743 (2014)
  31. Zhang H, Liu Y, Yan YJ, et al., Key Eng. Mater., 602, 274 (2014)