화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.5, 1530-1533, May, 2016
Alkaliphilic lysine decarboxylases for effective synthesis of cadaverine from L-lysine
E-mail:
The enzymatic decarboxylation of L-lysine using lysine decarboxylase is a promising biological approach for producing cadaverine, a versatile platform chemical for bio-polyamides. However, due to the problem with elevated pH in the reaction solution during the enzymatic process, it is desirable to use lysine decarboxylases effectively active in alkaline conditions. In this study, the catalytic properties of three lysine decarboxylases from Selenomonas ruminantium (srLDC), Vibrio vulnificus (vvLDC), and Geobacillus thermodenitrificans (gtLDC) were characterized, and the applicability of the enzymes in alkaline conditions was investigated. Among the three enzymes, only vvLDC exhibited effective activity in alkaline pH conditions. The conversion rate of vvLDC was 1.5-fold higher than that of srLDC and 5.3-fold higher than that of gtLDC in pH 9.0. The results indicate that vvLDC is more advantageous than srLDC and gtLDC for the enzymatic conversion of L-lysine to cadaverine in alkaline conditions.
  1. Adkins J, Pugh S, McKenna R, Nielsen DR, Front. Microbiol., 3, 313 (2012)
  2. Liu P, Zhang H, Lv M, Hu M, Li Z, Gao C, Xu P, Ma C, Scientific Reports, 4, 5657 (2014)
  3. Cai Z, Mei S, Lu Y, He Y, Pi P, Cheng J, Qian Y, Wen X, Int. J. Mol. Sci., 14, 20682 (2013)
  4. Adkins J, Pugh S, McKenna R, Nielsen DR, Front. Microbiol., 3, 313 (2012)
  5. Kind S, Wittmann C, Appl. Microbiol. Biotechnol., 91(5), 1287 (2011)
  6. Zhang K, Cai H, Wang C, Zhang HL, XiandaiHuagong/Modern Chem. Ind., 32, 21 (2012)
  7. Puiggali J, Franco L, Aleman C, Subirana JA, Macromolecules, 31(24), 8540 (1998)
  8. Morales-Gamez L, Soto D, Franco L, Puiggali J, Polymer, 51(24), 5788 (2010)
  9. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A, Appl. Microbiol. Biotechnol., 82(1), 115 (2009)
  10. Li N, Chou H, Yu L, Xu Y, Biotechnol. Bioprocess Eng., 19, 965 (2015)
  11. Park YK, Bearson B, Bang SH, Bang IS, Foster JW, Mol. Microbiol., 20, 605 (1996)
  12. Moreau PL, J. Bacteriol., 189, 2249 (2007)
  13. Romano A, Trip H, Lolkema JS, Lucas PM, J. Bacteriol., 195, 1249 (2013)
  14. Vienozinskien J, Januseviciut R, Pauliukonis A, Kazlauskas D, Anal. Biochem., 146, 180 (1985)
  15. Soda K, Moriguchi M, Biochem. Biophys. Res. Commun., 34, 34 (1969)
  16. Takatsuka Y, Onoda M, Sugiyama T, Muramoto K, Tomita T, Kamio Y, Biosci. Biotechnol. Biochem., 63, 1063 (1999)
  17. Sugawara A, Matsui D, Takahashi N, Yamada M, Asano Y, Isobe K, J. Biosci. Bioeng., 118(5), 496 (2014)
  18. Kamio Y, Terawaki Y, J. Bacteriol., 153, 658 (1983)
  19. Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y, J. Bacteriol., 179, 4486 (1997)
  20. Kim HS, Kim BH, Cho YD, Arch. Biochem. Biophys., 354, 40 (1998)
  21. Antoine FR, Wei CI, Littell RC, Marshall MR, J. Agric. Food Chem., 47, 5100 (1999)
  22. Lee J, Michael AJ, Martynowski D, Goldsmith EJ, Phillips MA, J. Biol. Chem., 282, 27115 (2007)
  23. Yamamoto S, Imamura T, Kusaba K, Shinoda S, Chem. Pharm. Bull., 39, 3067 (1991)
  24. Sabo DL, Boeker EA, Byers B, Waron H, Fischer EH, Biochemistry, 13, 662 (1974)