Korean Journal of Chemical Engineering, Vol.33, No.5, 1653-1658, May, 2016
Plasma treatment of multi-walled carbon nanotubes for lipase immobilization
E-mail:
Plasma-modified multiwalled carbon nanotubes (MWNTs) were used as a support to immobilize lipase. The effects of vacuum plasma treatment power, vacuum plasma treatment time, immobilization temperature, immobilization time, and initial protein concentration of the lipase on the amount of lipase immobilized and on the subsequent activity of the immobilized lipase were investigated. The results showed that the adsorption capacity of the plasma-modified MWNTs could reach 0.15 g/g and that the maximal enzyme activity of the immobilized lipase was 520U/g under optimized conditions. Fourier transform infrared (FTIR) analysis and transmission electron microscopy (TEM) were used to characterize the properties of the plasma-modified MWNTs and plasma-modified MWNTslipase, and the results showed that the lipase was successfully immobilized on the plasma-modified MWNTs. Also, the MWNTs-lipase produced an esterification rate of approximately 47% in the synthesis of polyethylene glycol (PEG)-aliphatic esters.
- Jaeger KE, Eggert T, Curr. Opin. Biotechnol., 13, 390 (2002)
- Gupta R, Gupta N, Rathi P, Appl. Microbiol. Biotechnol., 64(6), 763 (2004)
- Brady D, Jordaan J, Biotechnol. Lett., 31(11), 1639 (2009)
- Zou Y, Xiang C, Sun L, Xu F, Biosens. Bioelectron., 23, 1010 (2008)
- Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S, Microporous Mesoporous Mater., 44, 755 (2001)
- Kim J, Grate JW, Wang P, Chem. Eng. Sci., 61(3), 1017 (2006)
- Chiou SH, Wu WT, Biomaterials, 25, 197 (2004)
- Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA, J. Am. Chem. Soc., 125(7), 1684 (2003)
- Wang L, Wei L, Chen Y, Jiang R, J. Biotechnol., 150, 57 (2010)
- Feng W, Ji P, Biotechnol. Adv., 29, 889 (2011)
- Thostenson ET, Ren ZF, Chou TW, Compos. Sci. Technol., 61, 1899 (2001)
- Coleman JN, Khan U, Blau WJ, Gun’Ko YK, Carbon, 44, 1624 (2006)
- Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ, Adv. Mater., 15(5), 353 (2003)
- Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB, Science, 298, 2361 (2002)
- Wang J, Electroanalysis, 17, 7 (2005)
- Wang J, Musameh M, Lin YH, J. Am. Chem. Soc., 125(9), 2408 (2003)
- Wang YB, Iqbal Z, Malhotra SV, Chem. Phys. Lett., 402(1-3), 96 (2005)
- Guldi DM, Rahman GMA, Jux N, Balbinot D, Hartnagel U, Tagmatarchis N, Prato M, J. Am. Chem. Soc., 127(27), 9830 (2005)
- Karajanagi SS, Vertegel AA, Kane RS, Dordick JS, Langmuir, 20(26), 11594 (2004)
- Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF, Electrochem. Commun., 5, 408 (2003)
- Wang SG, Zhang Q, Wang RL, Yoon SF, Ahn J, Yang DJ, Tian JZ, Li JQ, Zhou Q, Electrochem. Commun., 5, 800 (2003)
- Merkoci A, Pumera M, Llopis X, Perez B, Valle MD, Alegret S, Trac-Trend. Anal. Chem., 24, 826 (2005)
- Karousis N, Tagmatarchis N, Tasis D, Chem. Rev., 110(9), 5366 (2010)
- Liu P, Eur. Polym. J., 41, 2693 (2005)
- Tasis D, Tagmatarchis N, Bianco A, Prato M, Chem. Rev., 106(3), 1105 (2006)
- Eitan A, Jiang KY, Dukes D, Andrews R, Schadler LS, Chem. Mater., 15, 3198 (2003)
- Aronsson BO, Lausmaa J, Kasemo B, J. Biomedical Mater., 35, 49 (1997)
- Shenton MJ, Stevens GC, J. Phys. D-Appl. Phys., 34, 2761 (2001)
- Cao LQ, Curr. Opin. Chem. Biol., 9, 217 (2005)
- Bradford MM, Anal. Biochem., 72, 248 (1976)
- de Fuentes IE, Viseras CA, Ubiali D, Terreni M, Alcantara AR, J. Mol. Catal. B-Enzym., 11, 657 (2001)
- Vorhaben T, Boettcher D, Jasinski D, Menyes U, Brueser V, Schroeder K, Bornscheuer UT, Chemcatchem., 2, 992 (2010)
- Kumar A, Gross RA, Biomacromolecules, 1(1), 133 (2000)
- Wu X, Zhang Y, Wu C, Wu H, T. Nonferr. Metal. Soc., 221, S162 (2012)
- Rastian Z, Khodadadi AA, Vahabzadeh F, Bortolini C, Dong M, Mortazavi Y, Mogharei A, Naseh MV, Guo Z, Biochem. Eng. J., 90, 16 (2014)