화학공학소재연구정보센터
Journal of Vacuum Science & Technology B, Vol.28, No.6, C6C48-C6C57, 2010
Simulation of electron beam lithography of nanostructures
The authors report a numeric simulation tool that they developed for the modeling and analysis of electron beam lithography (EBL) of nanostructures employing a popular positive tone resist polymethylmethacrylate (PMMA). Modeling and process design for EBL fabrication of 5-50 nm PMMA structures on solid substrates is the target purpose of the simulator. The simulator is functional for exposure energies from 1 to 50 keV with arbitrary writing geometries. The authors employ a suite of kinetic models for the traveling of primary, secondary, and backscattered electrons in the resist, compute three-dimensional (3D) distributions of the yield of main-chain scission in PMMA, and convert these into the local volume fractions of fragments of various sizes. The kinetic process of development is described by the movement of the resist-developer interface with the rate derived from the mean-field theory of polymer diffusion. The EBL simulator allows the computation of detailed 3D distributions of the yield of main-chain scission in PMMA for various conditions of exposure, the corresponding volume fractions of small fragments, and the clearance profiles as functions of the development in time and temperature. This article describes the models employed to simulate the EBL exposure and development, reports examples of the computations, and presents comparisons of the predicted development profiles with experimental cross-sectional resist profiles in dense gratings. (c) 2010 American Vacuum Society. [DOI: 10.1116/1.3497019]