Journal of Electroanalytical Chemistry, Vol.672, 40-44, 2012
Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine
Graphene/gold nanoparticle multilayer films composed of polysodium 4-styrenesulfonate (PSS) functionalized reduced graphene oxide (RGO) and polyamidoamine (PAMAM) dendrimer stabilized gold nanopartides (AuNPs) were built up using the electrostatic layer-by-layer (LBL) self-assembly technique on a glassy carbon electrode (GCE) modified with a first layer of poly(diallyldimethylammonium chloride) (PDDA). The film assembly, the electrochemical property as well as the electrocatalytic activity toward the oxidation of dopamine were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Electrochemical studies exhibit that the LBL assembled RGO/AuNPs films possess an excellent sensing performance for the detection of dopamine with a linear range from 1 1 mu M to 60 mu M and a limit of detection (LOD) as low as 0.02 mu M based on S/N = 3. In addition, this electrochemical sensor was applied to the simultaneous detection of dopamine and uric acid by using DPV with high sensitivity and selectivity. The good analytical performance and long-term stability of the proposed sensor can be attributed to the combination of the reduced graphene oxide and gold nanoparticles in the LBL assembly films and the synergistic effect on the electrochemical oxidation of dopamine. (C) 2012 Elsevier B.V. All rights reserved.