Journal of Electroanalytical Chemistry, Vol.734, 43-52, 2014
Combined photoelectrocatalytic/electro-Fenton process using a Pt/TiO2NTs photoanode for enhanced degradation of an azo dye: A mechanistic study
The combined photoelectrocatalytic/electro-Fenton (PEC/EF) process containing a Pt/TiO2NTs photoanode and an air-diffusion PTFE cathode is investigated in the degradation of the Acid Red 29 (AR29) dye. The photoelectrocatalytic (PEC), electro-Fenton (EF) and photoelectrocatalytic/electro-Fenton (PEC/EF) processes are compared in the performance of dye treatment. The mineralisation ability of the AR29 dye increased in the sequence PEC < EF < PEC/EF with total organic carbon (TOC) decays of 81%, 90% and 98%, respectively. The AR29 decays followed a pseudo first-order kinetic. The higher mineralisation capacity obtained for the PEC/EF process in comparison with the PEC and EF processes was ascribed to the additional production of (OH)-O-. by the photolytic reactions in bulk and on the Pt/TiO2NTs surface. The synergetic effect from the photocatalytic reduction of H2O2 onto the electrode surface (which minimises the electron/hole pair recombination) and the photolysis of Fe(III)-carboxylate complexes also enhanced the degradation efficiency of the coupled process. Finally, a plausible pathway for AR29 degradation via the PEC/EF process was proposed based on the by-products detected by HPLC and LC-MS/MS. (C) 2014 Elsevier B.V. All rights reserved.
Keywords:Electro-Fenton;Photoelectrocatalysis;Acid Red 29;Oxidation products;Pt decorated TiO2NTs photoanode;Wastewater treatment