Journal of Membrane Science, Vol.120, No.2, 161-167, 1996
Reverse Permeation of Sodium-Ions Driven by pH Difference Across a Liquid Membrane - Time Dependencies of Membrane Resistance and Membrane-Potential in a Reverse Permeation System
The diffusional flux of sodium ions across a liquid membrane was observed as a reverse permeation phenomenon : sodium ions were transported across the membrane against their own concentration difference. A supported liquid membrane having stearic acid as an ionic carrier was used. The internal aqueous phase contained NaCl and HCl and the external aqueous phase contained NaOH of the same initial concentration as NaCl iii the internal aqueous phase. The reverse permeation occurred with a long time delay. During the delay, sodium ions flowed from the acidic to alkaline solution. The diffusion coefficient of sodium ion estimated from the flux equation taking into account the Donnan equilibrium at the interface was found to be much greater than that in the membrane solvent, l-octanol. In the same membrane system as for the flux measurement, the membrane conductance and the membrane potential were measured as a function of time. The time dependence of the membrane potential in the presteady state showed a biphasic behavior. The initial rapid phase could be attributed to the change in the phase boundary potential and the subsequent slow step to the change in the diffusion potential within the membrane. Before die steady membrane potential had been reached, the reverse permeation of sodium ions against their own concentration difference was not observed. During the slow relaxation process of the membrane potential, the membrane resistance decreased to approach the steady state. Moreover, the oscillation of membrane potential abruptly started at a time in the slow step of the potential change and continued during the steady state. It was suggested that, at the presteady state, the increase in the amount of water in the membrane would drive a drastic change in the state of the liquid membrane in the filter pore, e.g. an inverted micellar structure making.