화학공학소재연구정보센터
International Journal of Molecular Sciences, Vol.14, No.10, 19911-19922, 2013
Inhibiting Invasion into Human Bladder Carcinoma 5637 Cells with Diallyl Trisulfide by Inhibiting Matrix Metalloproteinase Activities and Tightening Tight Junctions
Diallyl trisulfide (DATS), an organosulfur compound in garlic, possesses pronounced anti-cancer potential. However, the anti-invasive mechanism of this compound in human bladder carcinoma is not fully understood. In this study, we evaluated the anti-invasive effects of DATS on a human bladder carcinoma (5637) cell line and investigated the underlying mechanism. The results indicated that DATS suppressed migration and invasion of 5637 cells by reducing the activities and expression of matrix metalloproteinase (MMP)-2 and MMP-9 at both the protein and mRNA levels. DATS treatment up-regulated expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in 5637 cells. The inhibitory effects of DATS on invasiveness were associated with an increase in transepithelial electrical resistance and repression of the levels of claudin family members. Although further studies are needed, our data demonstrate that DATS exhibits anti-invasive effects in 5637 cells by down-regulating the activity of tight junctions and MMPs. DATS may have future utility in clinical applications for treating bladder cancer.