화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.38, No.5, 603-608, October, 2000
전기자동차의 축전지의 열적 특성 모델링
Modeling of the Thermal Behavior of an Electric-Vehicle Battery
E-mail:
초록
전기자동차용 축전지의 다양한 작동조건, 주변환경 및 설계인자들이 축전지의 열적 거동에 미치는 영향을 예측하기 위한 3차원 모델링을 수행하였다. 축전지의 열전도도는 각종 구성요소의 열전도저항이 직렬 및 병렬로 연결된 것으로 간주하였으며, 전극내에서 열이 균일하게 발생하는 것으로 가정하여 축전지의 열적 특성을 해석하였다. 작동 조건에 따른 최대 온도를 제시함으로써 축전지가 작동한계온도 범위 내에서 작동할 수 있는지를 판단할 수 있도록 하였다. 또한, 축전지의 특정부분의 표면온도를 측정하는 것만으로 내부의 최고 온도 예측을 가능하게 함으로써 축전지를 제어할 수 있는 기초자료로 사용할 수 있게 하였다. 본 연구의 결과는 전기자동차용 축전지의 최적 열관리 기술 개발에 효과적으로 활용될 수 있다.
A three-dimensional modeling was carried out to investigate the effects of operating conditions, ambient conditions, and design factors on the thermal behavior of an electric-vehicle(EV) battery. Thermal conductivities of various compartments of the battery were estimated based on the equivalent network of parallel/series thermal resistances of battery components. Heat generation rate was assumed to be uniform throughout battery electrodes. The maximal temperatures within the battery at various operating conditions were calculated in order to check whether the operating temperature of the battery is within acceptable range. In addition, the relation between the surface temperature of the specific region and the maximal temperature of the battery interior was obtained so that the measurement of the surface temperature may be used to predict the maximal temperature of the interior. The results of this study may be useful for the optimal design of the thermal management system of an EV battery.
  1. California Air Resource Board: "Low-Emission Vehicles/Clean Fuels and New Gasoline Specifications-Progress Report," (1989)
  2. Crompton TR, "Battery Reference Book," Butterworths, London (1990)
  3. Wu MS, Wang YY, Wan CC, J. Power Sources, 74(2), 202 (1998) 
  4. Bennet CO, Myers JE, "Momentum, Heat, and Mass Transfer," 3rd ed., McGraw-Hill, New York, NY (1982)
  5. Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," John Wiley & Sons, Inc., New York (1960)
  6. Botte GG, Johnson BA, White RE, J. Electrochem. Soc., 146(3), 914 (1999) 
  7. Gartling DK, Comput. Methods Appl. Mech. Eng., 12, 365 (1977) 
  8. Hughes TJR, "The Finite Element Method," Prentice-Hall, New Jersey, NJ (1987)
  9. Perry RH, "Perry's Chemical Engineers' Handbook," 6th ed., McGraw-Hill, New York. NY (1984)
  10. Welty JR, Wicks CE, Wilson RE, "Fundamentals of Momentum, Heat, and Mass Transfer," 3rd ed., John Wiley & Sons, New York, NY (1984)
  11. Reid RC, Prausnitz JM, Poling RE, "The Properties of Gases and Liquids," 4th ed., McGraw-Hill, New York, NY (1987)
  12. Dean JA, "Lange's Handbook of Chemistry," 13th ed., McGraw-Hill, New York, NY (1973)