화학공학소재연구정보센터
International Journal of Molecular Sciences, Vol.16, No.4, 7776-7795, 2015
Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging II: Over-Expression of Neprilysin Plays an Essential Role
Our previous studies strongly indicated that the up-regulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity. Fortunately, we succeeded in identifying human skin fibroblast-derived elastase as a previously known enzyme, neprilysin or neutral endopeptidase (NEP). We have also characterized epithelial-mesenchymal paracrine cytokine interactions between UVB-exposed-keratinocytes and dermal fibroblasts and found that interleukin-1 and granulocyte macrophage colony stimulatory factor (GM-CSF) are intrinsic cytokines secreted by UVB-exposed keratinocytes that stimulate the expression of neprilysin by fibroblasts. On the other hand, direct UVA exposure of human fibroblasts significantly stimulates the secretion of IL-6 and also elicits a significant increase in the gene expression of matrix metallo-protease(MMP)-1 as well as neprilysin (to a lesser extent), which is followed by distinct increases in their protein and enzymatic activity levels. Direct UVA exposure of human keratinocytes also stimulates the secretion of IL-6, IL-8 and GM-CSF but not of IL-1 and endothelin-1. These findings suggest that GM-CSF secreted by UVA-exposed keratinocytes as well as IL-6 secreted by UVA-exposed dermal fibroblasts play important and additional roles in UVA-induced sagging and wrinkling by up-regulation of neprilysin and MMP-1, respectively, in dermal fibroblasts.