Electrochimica Acta, Vol.196, 611-621, 2016
NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors
Ternary transition metal oxides such as NiCo2O4 show great potential as supercapacitor electrode materials. However, the unsatisfactory rate performance of NiCo2O4 may prove to be a major hurdle to its commercial usage. Herein, we report the development of NiCo2O4@TiN core-shell nanostructures for allsolid- state supercapacitors with significantly enhanced rate capability. We demonstrate that a thin layer of TiN conformally grown by atomic layer deposition (ALD) on NiCo2O4 nanofiber arrays plays a key role in improving their electrical conductivity, mechanical stability, and rate performance. Fabricated using the hybrid NiCo2O4@TiN electrodes, the symmetric all-solid-state supercapacitor exhibited an impressive stack power density of 58.205 mW cm (3) at a stack energy density of 0.061 mWh cm (3). To the best of our knowledge, these values are the highest of any NiCo2O4-based all-solid-state supercapacitor reported. Additionally, the resulting NiCo2O4@TiN all-solid-state device displayed outstanding cycling stability by retaining 70% of its original capacitance after 20,000 cycles at a high current density of 10 mA cm (2). These results illustrate the promise of ALD-assisted hybrid NiCo2O4@TiN electrodes within sustainable and integrated energy storage applications. (C) 2016 Elsevier Ltd. All rights reserved.
Keywords:Titanium nitride (TiN);Core-shell;Atomic layer deposition (ALD);All-solid-state;Supercapacitor