Electrochimica Acta, Vol.190, 365-370, 2016
Ni(II)-Based Metal-Organic Framework Anchored on Carbon Nanotubes for Highly Sensitive Non-Enzymatic Hydrogen Peroxide Sensing
Recently metal-organic frameworks (MOFs) have attracted more attention in developing new electrochemical sensors due to their unique properties such as crystalline ordered structures, tunable pore sizes, large surface areas, chemical tenability and thermal stability. However, the direct application of single component MOFs in electrochemistry is limited owing to their poor electronic conductivity and inferior electrocatalytic ability. Herein, Ni(II)-Based metal-organic framework (Ni(II)-MOFs) was successfully anchored on carbon nanotubes (CNTs) by in situ solvothermal method for the first time. In the as-prepared composites, 2 similar to 3 nm MOFs nanoparticles homogeneously dispersed on conducting CNTs allowed for the MOFs nanoparticles to be wired up to a current collector through the underlying conducting CNTs. As the electrode materials of an non-enzymatic H2O2 biosensor, the Ni(II)-MOFs/CNTs exhibited excellent electrocatalytic performance including a wide linear detection range from 0.01 to 51.6 mmol L (1), low detection limit of 2.11 mu mol L (1) and very fast response of 2.5 s for H2O2 sensing. Most importantly, the stability and conductivity of Ni(II)-based MOFs is far higher than that of pure MOFs. (C) 2015 Elsevier Ltd. All rights reserved.