화학공학소재연구정보센터
Electrochimica Acta, Vol.191, 275-283, 2016
One-step solvothermal synthesis of quasi-hexagonal Fe2O3 nanoplates/graphene composite as high performance electrode material for supercapacitor
This article describes a facile one-pot solvothermal method to prepare Fe2O3/graphene composite as high performance electrode material for supercapacitor. The morphology and structure of the samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Xray photoelectron spectroscopy, Raman spectra and nitrogen isothermal adsorption-desorption. The results reveal that the efficient loading of quasi-hexagonal alpha-Fe2O3 nanoplates and the reduction of graphene oxide were simultaneously realized. The electrochemical measurement demonstrates that Fe2O3/rGO composite shows a specific capacitance as high as 1083 F g(-1) at a discharge current density of 2 A g(-1). Even at the current density of 10 A g(-1), the specific capacitance is still as high as 517 F g(-1). After 1000 cycles, the capacity retention is still maintained at 75%. The electrochemical performances of the composites are superior to the pure samples owing to the synergistic effect of Fe2O3 and rGO. (C) 2016 Elsevier Ltd. All rights reserved.