화학공학소재연구정보센터
Biomacromolecules, Vol.17, No.4, 1506-1515, 2016
Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites
Incorporation of nanofillers into aliphatic polyesters is a convenient approach to create new nanomaterials with significantly reinforced mechanical properties compared to the neat polymers or conventional composites. Nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solutions can act as alternative reinforcement nanomaterials for polymers with improved mechanical properties. We report a simple and versatile process for the fabrication of NCG/poly(L-lactide-co-caprolactone) (NCG/P(LLA-co-CL) nanocomposites through in situ ring-opening polymerization of L-lactide (LLA) and epsilon-caprolactone (epsilon-CL) monomers in the NCG. The volume fraction of the NCG in the nanocomposites was tunable and ranged from 4.5% to 37%. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) results indicated that P(LLA-co-CL) were synthesized within the NCG and partially grafted onto the surface of the cellulose nanofibrils. The glass transition temperature (T-g) of the NCG/P(LLA-co-CL) nanocomposites could be altered by varying the molar ratio of LLA/epsilon-CL and was affected by the volume fraction of NCG. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images confirmed that the interconnected nanofibrillar cellulose network structure of the NCG was finely distributed and preserved in the P(LLA-co-CL) matrix after polymerization. The dynamic mechanical analysis (DMA) results showed remarkable reinforcement of the tensile storage modulus (E') of the P(LLA-co-CL) nanocomposites in the presence of NCG, especially above the T-g of the P(LLA-co-CL). The modified percolation model agreed well with the mechanical properties of the NCG/P(LLA-co-CL) nanocomposites. The introduction of NCG into the P(LLA-co-CL) matrix improved the mechanical properties and thermal stability of the NCG/P(LLA-co-CL) nanocomposites. Moreover, the NCG/P(LLA-co-CL) nanocomposites have tunable biodegradability and biocompatibility and potential applications in tissue engineering repair, biomedical implants, and packing.