화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.472, No.3, 477-481, 2016
Low toxic and high soluble camptothecin derivative 2-47 effectively induces apoptosis of tumor cells in vitro
The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2-47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2-47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC50) of 2- to 3-fold lower than HCPT as a control. In particular, 2-47 inhibited the proliferation of Jurkat cells with an IC50 of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2-47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2-47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2-47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2-47 solutes in CHCl3 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2-47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. (C) 2016 Elsevier Inc. All rights reserved.