Journal of Membrane Science, Vol.153, No.1, 57-69, 1999
The permeation of organophosphorus compounds in silicone rubber membranes
The permeabilities, solubilities, and diffusivities of eight organophosphorus chemicals in silicone rubber were measured at saturation concentration using two different experimental methods: permeation experiments and absorption experiments. All tests were carried out at 25 degrees C (+/-3 degrees C). The eight organophosphorus chemicals investigated are dimethyl methylphosphonate, diethyl methylphosphonate, dimethyl hydrogenphosphonate, diethyl hydrogenphosphonate, trimethylphosphate, triethylphosphate, trimethylphosphite, and triethylphosphite. These eight chemicals were selected based on their similarities to organophosphorus chemicals used as pesticides and chemical warfare agents. The experimental data were analyzed using solutions of Fick's second law of diffusion and boundary conditions representative of the experimental settings. An unsteady-state diffusion model using boundary conditions that represent uniform initial concentration in the polymer and constant but different surface concentrations was used to interpret the permeation experimental data. In this model, the effective diffusivity calculated from the steady-state permeability and equilibrium solubility of each chemical was used and was assumed to be constant.