화학공학소재연구정보센터
Journal of Membrane Science, Vol.156, No.1, 17-27, 1999
Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol
Novel two-ply dense composite membranes were prepared using successive castings of sodium alginate and chitosan solutions for the pervaporation dehydration of isopropanol and ethanol. Preparation and operating parameters namely polymer types facing to the feed stream, NaOH treatment for the regeneration of chitosan, and crosslinking system types were investigated using the factorial design method. It was shown that these parameters were all critical to the performance of the membrane in the form of the main and interaction effects. The pervaporation performance of the two-ply membrane with its sodium alginate layer facing the feed side and crosslinked or insolubilized in sulfuric acid solution was compared with the pure sodium alginate and the chitosan membranes in terms of the flux and separation factors. It was shown that although its flux was lower than that of the pure sodium alginate and chitosan membranes, the separation factors at various alcohol concentrations were in between values for the two pure membranes. For the dehydration of 90 wt% isopropanol-water mixtures the performance of the two-ply membrane which was moderately crosslinked in formaldehyde was found to match the high performance of the pure sodium alginate membrane. This two-ply membrane had fluxes of 70 g/m(2) h at 95% EtOH, 554 g/m(2) h at 90% PrOH and separation factors of 1110 at 95% EtOH, 2010 at 90% PrOH and its mechanical properties were better than that of the pure sodium alginate membrane.