화학공학소재연구정보센터
Advanced Functional Materials, Vol.26, No.13, 2207-2217, 2016
Cisplatin-Prodrug-Constructed Liposomes as a Versatile Theranostic Nanoplatform for Bimodal Imaging Guided Combination Cancer Therapy
Up to date, a large variety of liposomal nanodrugs have been explored for cancer nanomedicine, showing encouraging results in both preclinical animal experiments and clinical treatment of cancer patients. Herein, a phospholipid conjugated with a cisplatin prodrug is used as the major structure component of liposomes together with other commercial lipids via self-assembling. By doping with 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide (DiR), a lipophilic dye with strong near infrared (NIR) absorbance and fluorescence, the obtained DiR-Pt(IV)-liposome is found to be an effective probe for in vivo NIR fluorescence and photoacoustic bimodal imaging. Attributing to its intrinsically doped cis-Pt(IV) prodrug, efficient photothermal conversion ability, and excellent tumor homing ability, DiR-Pt(IV)-liposome confers greatly enhanced therapeutic outcomes in the combined photothermal-chemotherapy. Moreover, Pt(IV)-liposome is also demonstrated to be an efficient carrier for both small hydrophilic molecules and proteins, which are encapsulated inside the water-cavity of liposomes, further demonstrating the versatile functions of this nanoplatform. This study develops a unique type of liposomal nanomedicine with a prodrug conjugated phospholipid as the major structure component. Such Pt(IV)-liposome is featured with advantages including precisely defined/easily tunable drug compositions, stealth-like pharmacokinetics, efficient tumor passive uptake, and the capabilities to simultaneously load with various types of imaging or therapeutic agents.