화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.6, 556-563, June, 1999
용융염 LiCI 및 LiCI-Li2O에서 내열합금 More 1과 Super 22H의 부식거동
Corrosion Behavior of Heat- Resistant Alloys of More 1 and Super 22H in Molten Salt of LiCl and LiCl- Li2O
초록
LiCI 및 LiCI-Li2O 용융염분위기에서 고온 내열합금 More 1 과 Super 22H의 부식특성을 650-850℃ 온도범위에서 조사하였다. 용융염, LiCI에서는 치밀한 LiCrO, 보호막을 형성하였고 피막의 성장은 포물선 법칙을 나타내었다. 그러나 흔합용융엽, LiCI-Li2O 에서는 다콩성 Lix (Cr,Ni,Fe)2-xO2의 비보호막을 형성하였고 피악의 성장은 선형 법칙을 나타내었다. 용융염, LiCI 에서는 850℃ 까지 온도증가에 따라 부식속도는 약간 증가하는 것으로 나타났으나, 흔합용융염, LiCI-Li2O 에서는 750℃ 까지 온도증가에 따른 부식속도의 증가는 느리고, 750℃ 이상에서는 부식속도가 급격히 중가하였다. Super 22H 의 부식거동은 More 1과 비슷한 거동을 나타내였으나, Super 22H가 More 1 보다 높은 내식성을 나타내었다.
The corrosion behavior of heat-resistant alloys, More 1 and Super 22H in molten salts of LiCl and $LiCl-Li_2$ O was investigated in the temperature range of $650~850^{\circ}C$ . In a molten salt of LiCl, a dense protective oxide scale of $LiCrO_2$ was formed, following growth of oxide scale with parabolic kinetics. But in a mixed molten salt of LiCl, a dense protective oxide scale of $LiCrO_2$ was formed, following growth of oxide scale with parabolic kinetics. But in a mixed molten salt of $LiCl-Li_2$ O, a porous non-protective scale of Li\ulcorner(Cr, Ni, Fe)\ulcornerO $_2$ was formed, following growth of oxide scale with linear kinetics. The corrosion rate increased slowly with the increase of temperature up to $750^{\circ}C$ , but above $750^{\circ}C$ rapid increase in corrosion rate observed. The corrosion behavior of Super 22H alloy was similar to that of More 1 alloy, but Super 22H showed higher corrosion resistance than More 1.
  1. Goebel JA, Pettit FS, Met. Trans., 1, 1943 (1970)
  2. Rahmel A, Engell HJ, Corrosion, 18, 320 (1966)
  3. Kameswari S, Oxid. Met., 26, 33 (1986)
  4. Mckee DW, Shores DA, Luthra KL, J. Electrochem. Soc., 125, 411 (1978)
  5. Spiegel M, Biedenkipf P, Grabke HJ, Corrosion Sci., 39, 1193 (1997)
  6. Mitsushima S, Kamiya N, Ota KI, J. Electrochem. Soc., 137, 2713 (1990)
  7. Kochergin MM, Stolyarova GI, J. Appl. Chem. USSR, 29, 789 (1956)
  8. Copson HR, J. Electrochem. Soc., 100, 257 (1953)
  9. Smyrl WH, Blanckburn MJ, Corrosion, 31, 370 (1972)
  10. Colom F, Bodalo A, Corrosion Sci., 12, 73 (1972)
  11. Gill CB, Staumanis ME, Schlechten WE, J. Electrochem. Soc., 102, 42 (1955)
  12. Janz GJ, Allen CB, Downey JR, Eutectic Data, TID-27163 (1978).
  13. 田博雄, 春山志郞, 日本金屬學會誌, 42, 882 (1978).
  14. 古川和男, 田博雄, 防食技術, 29, 185 (1980).
  15. Viswanathan R, Corrosion, 24, 359 (1968)
  16. Forrest JE, Robertson J, Corrosion Sci., 32, 541 (1991)
  17. Perakis, Kern, Compt. Rend., 269B, 281 (1969)
  18. Tauber A, Moller WM, J. Solid State Chem., 4, 138 (1972)
  19. Dyer LD, Borie BS, Smith GP, J. Am. Chem. Soc., 76, 1499 (1954)
  20. Andersdn JC, Schieber M, J. Phys. Chem. Solids, 25, 961 (1964)
  21. Jones DA, Principles and Prevention of Corrosion, Macmillan Publishing Company, New York (1992).
  22. Goebel JA, Pettit FS, Goward GW, Met. Trans., 4, 261 (1973)