화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.6, 569-576, June, 1999
Cu-16 at % Ag 미세복합재료의 미세구조와 전도도
Microstructure and Electrical Conductivity of Cu-16 at % Ag Microcomposite
초록
본 연구에서는 Cu-Ag 미세복합재료의 기계적 · 전기척 특성과 열처리에 의해 변형된 미세구조와의 상관관계에 대하여 연구하였다. 심하게 가공된 Cu-Ag 미세복합재료에서는 필라멘트의 간격이 매우 작기 때운에 안정한 내부 전위구조를 유지하기에는 미세조직이 너무 마세하고 Ag 필라멘트와 Cu 기지간의 계면적은 상당히 큰 것으로 관찰되었다. 대부분의 전위들은 가공융을 증가시켜강에 따라 필라벤트 계연으로 점차 이동되어 들어가는 것으로 생각되어진다. Cu-Ag 미세복합재료에서는 Ag 필라벤트 계변에서의 전자 산란이 비저항에 기여하는 주원인이 되는 것으로 판단되며, 높은 열처리 온도에서의 Ag 필라멘트의 재용해와 조대화는 전도도의 급격한 증가의 원인이 되는 것으로 나타났다. 인발한 Cu-Ag 미세복합재료의 295K 와 77K 의 비저항 비율 (PZ95K / P77K) 이 상대척으로 낮은 것은 계변에셔의 산란에 의한 것으로 설명될 수 있다.
In this study, the effect of the microstructural evolution on the electrical of Cu-Ag microcomposite was investigated. The nature of interfaces between silver filaments and Cu matrix may have pronounced effects on the physical properties of Cu-Ag filamentary microcomposites, little is known about these interfaces. In heavily drawn Cu-Ag filamentary microcomposities, the microstructure is too fine and the interfacial area is too large to maintsin a stable internal dislocation structure because of closely spaced filaments. Rather, most dislocations are thought to be gradually absorbed at the interfaces as the draw ratio increases. The mechanical and electrical properties of Cu-Ag filamentary microcomposites wires were also examined and correlated with the microstructural change caused by thermomechanical treatments. The study on the electrical conductivity combined to resistivity in Cu-Ag filamentary microcomposites and the rapid increase of the electrical conductivity at high annealing temperatures is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities at 295K( $\rho$ \ulcorner/ $\rho$ \ulcorner) in as-drawn Cu-Ag microcomposites can also be explained by the contribution of the interface scattering.
  1. Hong SI, Hill MA, Acta Mater., 46, 4111 (1998)
  2. Dew-Hughes D, Mater. Sci. Eng., 168A, 35 (1993)
  3. Gersdorf R, Roeland LW, Mattens WCM, Physica B, 155 (1989)
  4. Foner S, Int'l J. Appl. Electomagnetics in Materials, 1, 111 (1990)
  5. Hong SI, Hill MA, Sakai Y, Wood JT, Embury JD, Acta Metall. Mater., 43, 3313 (1995)
  6. Sakai Y, Inoue K, Asano T, Wada H, Maeda H, Appl. Phys. Lett., 59, 2965 (1991)
  7. Spitzig WA, Scripta Metall., 23, 1177 (1989)
  8. Frommeyer G, Wassermann G, Acta Metall., 23, 1353 (1975)
  9. Benghalem A, Morris DG, Acta Metall. Mater., 45, 1017 (1997)
  10. Sakai Y, Schneider-Muntau HJ, Acta Metall. Mater., 45, 1017 (1997)
  11. Hong SI, Gray III GT, Acta Metall., 40, 3299 (1992)
  12. Wilsdorf HGF, Kuhlmann-Wilsdorf D, Mater. Sci. Eng., 164A, 1 (1993)
  13. Hong SI, Laird C, Mater. Sci. Eng., 128A, 155 (1990)
  14. Hong SI, Laird C, Acta Metall., 38, 1581 (1990)
  15. Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MJ, Electron Microscopy of Thin Crystals, Robert E. Krieger Publisher, Huntington, New York, 343 (1977).
  16. Correia JB, Davies HA, Sellars CM, Acta Mater., 45, 177 (1977)
  17. Spitzig WA, Verhoeven JD, Trybus CL, Chumbly LS, Scripta Met., 24, 1171 (1990)
  18. Spitzig WA, Verhoeven JD, Trybus CL, Chumbly LS, Scripta Met., 24, 1181 (1990)
  19. Spitzig WA, Acta Metall. Mater., 39, 1085 (1991)
  20. Funkenbusch PD, Courtney TH, Scripta Met., 23, 1719 (1989)
  21. Funkenbusch PD, Lee JK, Courtney TH, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 18A, 1249 (1987)
  22. Funkenbusch PD, Courtney TH, Scripta Met., 24, 1175 (1990)
  23. Horibe S, Lee JK, Laird C, Mater. Sci. Eng., 63, 257 (1984)
  24. Gerold V, Karnthaler HP, Acta Metall., 37, 2177 (1989)
  25. Verhoeven JD, Downing HL, Chumbley LS, Gibson ED, J. Appl. Phys., 65, 1293 (1989)
  26. Jerman GA, Anderson IE, Verhoeven JD, Metall. Trans., 24A, 35 (1993)
  27. Karasek KR, Bevk J, J. Appl. Phys., 52, 1370 (1981)
  28. Pelton AR, Laabs FC, Spitzig WA, Cheng CC, Ultramicroscopy, 22, 1249 (1987)
  29. SEVILLANO JG, VANHOUTTE P, AERNOUDT E, Prog. Mater. Sci., 25(2-4), 69 (1980)
  30. Sevillano JG, Hernoudt E, Mater. Sci. Eng., 86, 35 (1987)
  31. Frommeyer G, Wassermann G, Phys. Status Solidi A-Appl. Res., 27, 99 (1975)
  32. Ellis TW, Anderson LE, Downing HL, Verhoeven JD, Metall. Trans., 24A, 21 (1993)
  33. Spitzig WA, Dowing HL, Laabs FC, Gibson ED, Verhoeven JD, Metall. Trans., 24A, 7 (1993)
  34. Pollock DD, Physics of Engineering Materials, Prentice Hall, Englewood Cliffs, New Jersey, 220 (1990) .