화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.4, 349-354, April, 1999
90% Bi2Te3-10% Bi2Se3 단결정의 밴드갭 에너지와 열전특성
Band-Gap Energy and Thermoelectric Properties of 90% Bi2Te3-10% Bi2Se3 Single Crystals
초록
Dopant를 첨가하지 않은 시료와 donor dopant로 CdI2를 청가한 90% Bi2Te3-l0% Bi2se3 단결정을 Bridgrnan 법으로 성장시키고 Hall 계수, 전하이동도, 전기비저항, Seebeck 계수, 열전도도 빛 성능지수를 77~600K의 온도범위에서 측정하였다. Dopant를 첨가하지 않은 90% Bi2Te3-10% Bi2Se3 단결정에서 포화정공농도는 5.85 X 10 18 cm-3 이고 degenerate 온도는 127K 이었으며, 전하 이동에 대한 산란인자는 -0.23 이고 전자이동도와 정공이동도의 비 (μe/μh)는 1.45 이었다. 90% Bi2Te3- 10% Bi2Se3 단결정의 0k 에서의 밴드갭 에너지는 0.200 eV 로서 Bi2Te3-Bi2Se3계 단결정에서는 Bi2Se3의 농도가 증가할수록 밴드갭 에너지가 증가하였다. Donor dopant로 CdI2를 첨가한 90% Bi2Te3-10% Bi2Se3 조성의 n 형 단결정에서 성능지수의 최대값은 CdI2를 0.05 wt% 첨가한 경우에 약 230K 에서 3.2x10 -3/K 를 나타내었다.
The temperature dependences of the Hall coefficient, carrier mobility, electrical resistivity, Seebeck coefficient, thermal conductivity, and figure-of-merit of the undoped and CdI2-doped 90% Bi2Te3-10% Bi2Se3 single crystals, grown by the Bridgman method. have been characterized at temperatures ranging fJiom 77K to 600K The saturated carrier conæntration and degenerate temperature of the undoped 90% Bi2Te3-10% Bi3Se3 single crystal are 5.85 x 10 18cm-3 and 127K, respectively. The scattering parameter of the 90% Bi2Te3-10% Bi2Se3 single crystal is determined to be -0.23, and the electron mobility to hole mobility ratio (μ/μ) is 1.45. The bandgap energy at 0K of the 90% Bi2Te3-10% Bi2Se3 single crystal is 0,200 eV. Adding CdI2 as a donor dopant, a maximum figure-of-merit of 3.2x 10-3/K at 230K was obtained for 0.05 wt% CdI2-doped specimen.
  1. Rowe DM, CRC Handbook of Thermoelectrics, CRC Press, Inc., Boca Raton (1995).
  2. Cope RG, Penn AW, J. Mater. Sci., 3, 103 (1968)
  3. Greenaway DL, Harbeke G, J. Phys. Chem. Solids, 26, 1585 (1965)
  4. Hyun DB, Ha HP, Shim JD, Proc. XI International Conf. Thermoelectrics, Arlington, Texas, 266 (1992).
  5. Black J, Conwell EM, Seigel L, Spencer CW, J. Phys. Chem. Solids, 2, 240 (1957)
  6. Kaibe H, Sakata M, Isoda Y, Nishida I, J. Jpn. Inst. Met., 53, 958 (1989)
  7. Eklund PC, Mabatah AK, Rev. Sci. Instrum., 48, 775 (1977)
  8. Harman TC, Cahn JH, Logan MJ, J. Appl. Phys., 30, 1351 (1959)
  9. Goldsmid HJ, Proc. Phys. Soc., 71, 633 (1958)
  10. Goldsmid HJ, Thermoelectric Refrigeration, Plenum Press, New York, (1964).
  11. Seeger K, Semiconductor Physics, Springer-Verlag, New York, 61 (1982).
  12. Hyun DB, Hwang JS, Oh TS, Shim JD, Kolomoets NV, J. Phys. Chem. Solids, 59, 1039 (1998)
  13. Shockley W, Electrons and Holes in Semiconductor, Van Nostrand Co., (1950).
  14. Shigetomi S, Mori S, J. Phys. Soc. Jpn., 11, 915 (1956)
  15. loffe AF, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, London (1957).
  16. Rowe DM, Bhandari CM, Modern Thermoelectrics, Holt, Rinehart and Winston, London, 22 (1983).
  17. Austin LG, Sheard A, J. electron. Contr., 3, 236 (1957)
  18. Greenaway DL, Harbake G, J. Phys. Chem. Solids, 26, 1585 (1965)