화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.3, 371-379, May, 2016
PLA/PBAT/MEA 블렌드의 구조변화 및 열적, 기계적 성질
Structural, Thermal, and Mechanical Properties of PLA/PBAT/MEA Blend
E-mail:
초록
본 연구에서는 poly(lactic acid)(PLA), poly(butylene adipate-co-terephthalate)(PBAT), ethanolamine(MEA) 블렌드를 제작하였다. MEA는 PLA/PBAT의 에스터 치환반응을 가능하게 하였고, 커플링반응의 촉매로써 작용하였으며, PLA와 PBAT간의 상용성을 증진하게 하였다. PLA/PBAT/MEA 블렌드의 구조 및 열적 특성을 관찰하였고, PLA/PBAT/MEA 블렌드를 PLA/PBAT 블렌드의 커플링제로 사용하였다. 결론적으로 PLA/PBAT/MEA 블렌드는 화학적 결합으로 인하여 상용성을 향상하였고, 커플링제로의 가능성을 보여주었다.
In this study, a polymer blend of poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and ethanolamine (MEA) (PLA/PBAT/MEA) was prepared. MEA made PLA/PBAT capable of transesterification reaction, acted as a catalyst of coupling reaction and improved the compatibility between PLA and PBAT. The structural and thermal properties of PLA/PBAT/MEA blend were characterized, and PLA/PBAT/MEA blend was used for the coupling agent of PLA/PBAT blend. In conclusion, the PLA/PBAT/MEA blend had an improved compatibility due to chemical coupling and showed a possibility as a coupling agent.
  1. Carothers WH, Dorough GL, Van natta FJ, J. Am. Chem. Soc., 54, 761 (1932)
  2. Dorgan J, Lehermeier J, Palade L, Cicero J, Macromol. Symp., 175, 55 (2001)
  3. Jacobsen S, Degee PH, Fritz HG, Dubois PH, Jerome R, Polym. Eng. Sci., 39(7), 1311 (1999)
  4. Sinclair RG, ANTEC, 87, 1214 (1987)
  5. Kricheldorf HR, Kreiser-Saunders I, Macromol. Symp., 103, 85 (1996)
  6. Nampoothiri KM, Nair NR, John RP, Bioresour. Technol., 101(22), 8493 (2010)
  7. Otera J, Esterification, Wiley-VCH, Weinheim, 2003.
  8. Benetti S, Romagnoli R, Derisi C, Spalluto G, Zanirato V, Chem. Rev., 95(4), 1065 (1995)
  9. Riemenschneider W, Bolt HM, Esters Organic Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
  10. Nair V, Bindu S, Sreekumar V, Angew. Chem.-Int. Edit., 43, 5130 (2004)
  11. Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M, Nature, 438, 178 (2005)
  12. Yoo DW, Han JH, Nam SH, Kim HJ, Kim C, Lee JK, Inorg. Chem. Commun., 9, 654 (2006)
  13. Stanton MG, Gagne MR, J. Org. Chem., 62, 8240 (1997)
  14. Lin MH, Rajanbabu TV, Org. Lett., 2, 997 (2000)
  15. Hans JJ, Driver RW, Burke SD, J. Org. Chem., 64, 1430 (1999)
  16. Weissermel K, Arpe H, Lindley CR, Hawkins S, Industrial Organic Chemistry, 2nd Edition, Wiley-VCH, Weinheim, 2003.
  17. Occupational Safety & Health Administration. https://www.osha.gov/dts/chemicalsampling/data/CH_239000.html (2012).
  18. Spitalsky Z, Lacik I, Lathova E, Janigova I, Chodak I, Polym. Degrad. Stabil., 91, 856 (2006)
  19. Kim DJ, Min CH, Park HY, Kim SG, Seo KH, Appl. Chem. Eng., 24(1), 104 (2013)
  20. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ, Polym. Test, 32, 918 (2013)
  21. Ren J, “Biodegradable Poly(Lactic Acid): Synthesis, Modification”, in Processing and Applications, Springer-Verlag, London, 2011.
  22. Asahi Research Center, Handbook of Proton-NMR Spectra and Data-Vol 7, Academic Press, Tokyo, 1985.
  23. Asahi Research Center, Handbook of Proton-NMR Spectra and Data-Vol 8, Academic Press, Tokyo, 1985.
  24. Asahi Research Center, Handbook of Proton-NMR Spectra and Data-Vol 1, Academic Press, Tokyo, 1985.
  25. The Infrared Spectra Atls of Monomers and Polymers, Sadtler Research Labs, Philadelphia, 1984.