화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.37, 22-26, May, 2016
Fluorination of single-walled carbon nanotube: The effects of fluorine on structural and electrical properties
E-mail:
The surfaces of single-walled carbon nanotube (SWCNT) are fluorinated at room temperature to examine their structural and electrical properties after fluorination. Fluorine functional groups are introduced on the surfaces of SWCNT via direct fluorination. The structural properties of the fluorinated SWCNT indicate that the number of defects increases due to the carbon to fluorine bond formation and that the fluorine radicals have an etching effect on the SWCNT. Thus, the structural changes of SWCNT caused by fluorination include increased diameters and changes in chirality. In addition, the conductivity of the SWCNT decreases due to the formation of carbon to fluorine bonds that prohibit the pi electron activity in SWCNT.
  1. Lee YS, Yoon KH, Carbon Lett., 16, 86 (2015)
  2. Jung MJ, Jeong E, Lee YS, Appl. Surf. Sci., 347, 250 (2015)
  3. Im JS, Kang SC, Bai BC, Bae TS, In SJ, Jeong E, Lee SH, Lee YS, Carbon, 49, 2235 (2011)
  4. Lee SH, Im JS, Kang SC, Bae TS, In SJ, Jeong E, Lee YS, Chem. Phys. Lett., 497(4-6), 191 (2010)
  5. Yu HR, Kim JG, Im JS, Bae TS, Lee YS, J. Ind. Eng. Chem., 18(2), 674 (2012)
  6. Bhat BMUD, Dar JR, Sen P, Carbon Lett., 17, 29 (2016)
  7. Tasis D, Tagmatarchis N, Bianco A, Prato M, Chem. Rev., 106(3), 1105 (2006)
  8. Zhao YL, Stoddart JF, Acc. Chem. Res., 42, 1161 (2009)
  9. Savage T, Bhattacharya S, Sadanadan B, Gaillard J, Tritt TM, Sun YP, J. Phys. Condens. Matter, 15, 5915 (2003)
  10. Felten A, Bittencourt C, Pireaux JJ, Nanotechnology, 17, 1954 (2006)
  11. Hoshida T, Tsubone D, Takada K, Kodama H, Hasebe T, Kamijo A, Suzuki T, Hotta A, Surf. Coat. Technol., 202, 1089 (2007)
  12. Hruska Z, Lepot X, J. Fluor. Chem., 105, 87 (2000)
  13. Park MS, Kim KH, Kim MJ, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 490, 104 (2016)
  14. Park MS, Yun KJ, Lee YS, Appl. Chem. Eng., 25(6), 613 (2014)
  15. Osuna S, Torrent-Sucarrat M, Sola M, Geerlings P, Ewels CP, Van Lier G, J. Phys. Chem. C, 114, 3340 (2010)
  16. Kharitonov AP, Simbirtseva GV, Tkachev AG, Blohin AN, Dyachkova TP, Maksimkin AA, Chukov DI, Compos. Sci. Technol., 107, 162 (2015)
  17. Rivera W, Perez JM, Ruoff RS, Lorents DC, Malhotra R, Lim S, Rho YG, Jacobs EG, Pinizzotto RF, J. Vac. Sci. Technol. B, 13(2), 327 (1995)
  18. Bai BC, Kang SC, Im JS, Lee SH, Lee YS, Mater. Res. Bull., 46(9), 1391 (2011)
  19. Cho S, Yu HR, Kim KD, Yi YB, Lee YS, Chem. Eng. J., 89, 211 (2012)
  20. Hattori Y, Noguchi N, Okino F, Touhara H, Nakahigashi Y, Utsumi S, Tanaka H, Kanoh H, Kaneko K, Carbon, 45, 1391 (2007)
  21. Jung MJ, Jeong E, Kim S, Lee SI, Yoo JS, Lee YS, J. Fluor. Chem., 132, 1127 (2011)
  22. Jeong E, Jung MJ, Lee YS, J. Fluor. Chem., 150, 98 (2013)
  23. Paul R, Mitra AK, ISRN Optics, (Article ID 732067)., 2012 (2012)
  24. Qiu J, Li Y, Wang Y, Liang C, Wang T, Wang D, Carbon, 41, 767 (2003)
  25. Karthikeyan S, Viswanathan K, Boopathy R, Maharaja P, Sekaran G, J. Ind. Eng. Chem., 21, 942 (2015)
  26. Kim YA, Yang KS, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS, Carbon Lett., 15, 77 (2014)
  27. Krestinin AV, Kharitonov AP, Shul’ga YM, Zhigalina OM, Knerel’man EI, Dubois M, Brzhezinskaya MM, Vinogradov AS, Preobrazhenskii AB, Zvereva GI, Kislov MB, Martynenko VM, Korobov II, Davydova GI, Zhigalina VG, Kiselev NA, Nanotechnol. Russ., 4, 60 (2009)
  28. Khabashesku VN, Billups WE, Margrave JL, Acc. Chem. Res., 35, 1087 (2002)
  29. Peter JFH, Carbon Nanotubes and Related Structures, Cambridge University, USA, 1999.
  30. Park W, Physics and High Technology: Carbon Nanotube-Based Electronics, 13, The Korean Physical Society, Korea, 2004.
  31. Housecroft C, Sharpe AG, Inorganic Chemistry, 4th ed., University of Basel, Switzerland, 2012.
  32. Talaeemashhadi S, Sansotera M, Gambarotti C, Famulari A, Bianchi CL, Guarda PA, Navarrini W, Carbon, 59, 150 (2013)