화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.37, 175-179, May, 2016
Facile synthesis of flower-like a-Co(OH)2 nanostructures for electrochemical water splitting and pseudocapacitor applications
E-mail:
We describe a facile synthetic route to α-Co(OH)2 nanostructures by heating a solution containing CoCl2, ethylene glycol, and oleylamine. Electron microscopy and X-ray diffraction analyses revealed that flower-like nanostructures of α-Co(OH)2 were formed by assembly of thin α-Co(OH)2 nanosheets. These nanostructures exhibited high activity for electrochemical water splitting with a current density comparable to that obtained on the commercial Pt wire electrode. In addition, these flower-like α-Co(OH)2 nanostructures showed specific capacitance as high as 440 F/g at a current density of 1 A/g and excellent stability without any noticeable loss in capacitance after 5000 cycles of the galvanostatic charge-discharge test.
  1. Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F, Small, 11, 1310 (2015)
  2. Zhao YF, Zhang XJ, He J, Zhang L, Xia MR, Gao FM, Electrochim. Acta, 174, 51 (2015)
  3. Tang YF, Liu YY, Yu SX, Mu SC, Xiao SH, Zhao YF, Gao FM, J. Power Sources, 256, 160 (2014)
  4. Aghazadeh M, Shiri HM, Barmi AAM, Appl. Surf. Sci., 273, 237 (2013)
  5. Yang W, Feng Y, Wang N, Yuan H, Xiao D, J. Alloy. Compd., 644, 836 (2015)
  6. Zhao T, Jiang H, Ma J, J. Power Sources, 196(2), 860 (2011)
  7. Zhong JH, Wang AL, Li GR, Wang JW, Ou YN, Tong YX, J. Mater. Chem., 22, 5656 (2012)
  8. Hu ZA, Xie YL, Wang YM, Wu HY, Yang YY, Zhang ZY, Electrochim. Acta, 54(10), 2737 (2009)
  9. Zhang YZ, Wang Y, Cheng T, Lai WY, Pang H, Huang W, Chem. Soc. Rev., 44, 5181 (2015)
  10. Zhang YZ, Wang Y, Xie YL, Cheng T, Lai WY, Pang H, Huang W, Nanoscale, 6, 14354 (2014)
  11. Pang H, Zhang Y, Lai WY, Hu Z, Huang W, Nano Energy, 15, 303 (2015)
  12. Wu T, Yuan CZ, Mater. Lett., 85, 161 (2012)
  13. Vinothbabu P, Elumalai P, R. Soc. Chem. Adv., 4, 31219 (2014)
  14. Ge X, Gu CD, Wang XL, Tu JP, J. Phys. Chem. C, 118, 911 (2014)
  15. Jeevanandam P, Koltypin Y, Gedanken A, Mastai Y, J. Mater. Chem., 10, 511 (2000)
  16. Liang YY, Cao L, Kong LB, Li HL, J. Power Sources, 136(1), 197 (2004)
  17. Cao L, Xu F, Liang YY, Li HL, Adv. Mater., 16(20), 1853 (2004)
  18. Kang YS, Qiao R, Zhang XL, Qiu R, Kim JC, Chem.-Eur. J., 15, 1886 (2009)
  19. Zhu YJ, Yang LX, Li L, Zhang L, Tong H, Wang WW, Cheng GF, Zhu JF, Eur. J. Inorg. Chem., 10, 4787 (2006)
  20. Jun SC, Patil UM, Nam MS, Sohn JS, Kulkarni SB, Shin R, Kang S, Lee S, Kim JH, J. Mater. Chem. A, 2, 19075 (2013)
  21. Liu ZP, Ma RZ, Osada M, Takada K, Sasaki T, J. Am. Chem. Soc., 127(40), 13869 (2005)
  22. Dixit M, Subbanna GN, Kamath PV, J. Mater. Chem., 6, 1429 (1996)
  23. Jayashree RS, Kamath PV, J. Mater. Chem., 9, 961 (1999)
  24. Hu ZA, Xie YL, Wang YX, Xie LJ, Fu GR, Jin XQ, Zhang ZY, Yang YY, Wu HY, J. Phys. Chem. C, 113, 12502 (2009)
  25. Hou L, Yuan C, Yang L, Shen L, Zhang F, Zhang X, CrystEngComm, 13, 6130 (2011)
  26. Suksomboon M, Srimuk P, Krittayavathananon A, Luanwuthi S, Sawangphruk M, R. Soc. Chem. Adv., 4, 56876 (2014)
  27. Gupta V, Kusahara T, Toyama H, Gupta S, Miura N, Electrochem. Commun., 9, 2315 (2007)
  28. Koza JA, Hull CM, Liu YC, Switzer JA, Chem. Mater., 25, 1922 (2013)
  29. Song F, Hu XL, J. Am. Chem. Soc., 136(47), 16481 (2014)
  30. Zhang YX, Xiao QQ, Guo X, Zhang XX, Xue YF, Jing L, Zhai X, Yan YM, Sun KN, J. Power Sources, 278, 464 (2015)