Journal of Industrial and Engineering Chemistry, Vol.37, 175-179, May, 2016
Facile synthesis of flower-like a-Co(OH)2 nanostructures for electrochemical water splitting and pseudocapacitor applications
E-mail:
We describe a facile synthetic route to α-Co(OH)2 nanostructures by heating a solution containing CoCl2, ethylene glycol, and oleylamine. Electron microscopy and X-ray diffraction analyses revealed that flower-like nanostructures of α-Co(OH)2 were formed by assembly of thin α-Co(OH)2 nanosheets. These nanostructures exhibited high activity for electrochemical water splitting with a current density comparable to that obtained on the commercial Pt wire electrode. In addition, these flower-like α-Co(OH)2 nanostructures showed specific capacitance as high as 440 F/g at a current density of 1 A/g and excellent stability without any noticeable loss in capacitance after 5000 cycles of the galvanostatic charge-discharge test.
- Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F, Small, 11, 1310 (2015)
- Zhao YF, Zhang XJ, He J, Zhang L, Xia MR, Gao FM, Electrochim. Acta, 174, 51 (2015)
- Tang YF, Liu YY, Yu SX, Mu SC, Xiao SH, Zhao YF, Gao FM, J. Power Sources, 256, 160 (2014)
- Aghazadeh M, Shiri HM, Barmi AAM, Appl. Surf. Sci., 273, 237 (2013)
- Yang W, Feng Y, Wang N, Yuan H, Xiao D, J. Alloy. Compd., 644, 836 (2015)
- Zhao T, Jiang H, Ma J, J. Power Sources, 196(2), 860 (2011)
- Zhong JH, Wang AL, Li GR, Wang JW, Ou YN, Tong YX, J. Mater. Chem., 22, 5656 (2012)
- Hu ZA, Xie YL, Wang YM, Wu HY, Yang YY, Zhang ZY, Electrochim. Acta, 54(10), 2737 (2009)
- Zhang YZ, Wang Y, Cheng T, Lai WY, Pang H, Huang W, Chem. Soc. Rev., 44, 5181 (2015)
- Zhang YZ, Wang Y, Xie YL, Cheng T, Lai WY, Pang H, Huang W, Nanoscale, 6, 14354 (2014)
- Pang H, Zhang Y, Lai WY, Hu Z, Huang W, Nano Energy, 15, 303 (2015)
- Wu T, Yuan CZ, Mater. Lett., 85, 161 (2012)
- Vinothbabu P, Elumalai P, R. Soc. Chem. Adv., 4, 31219 (2014)
- Ge X, Gu CD, Wang XL, Tu JP, J. Phys. Chem. C, 118, 911 (2014)
- Jeevanandam P, Koltypin Y, Gedanken A, Mastai Y, J. Mater. Chem., 10, 511 (2000)
- Liang YY, Cao L, Kong LB, Li HL, J. Power Sources, 136(1), 197 (2004)
- Cao L, Xu F, Liang YY, Li HL, Adv. Mater., 16(20), 1853 (2004)
- Kang YS, Qiao R, Zhang XL, Qiu R, Kim JC, Chem.-Eur. J., 15, 1886 (2009)
- Zhu YJ, Yang LX, Li L, Zhang L, Tong H, Wang WW, Cheng GF, Zhu JF, Eur. J. Inorg. Chem., 10, 4787 (2006)
- Jun SC, Patil UM, Nam MS, Sohn JS, Kulkarni SB, Shin R, Kang S, Lee S, Kim JH, J. Mater. Chem. A, 2, 19075 (2013)
- Liu ZP, Ma RZ, Osada M, Takada K, Sasaki T, J. Am. Chem. Soc., 127(40), 13869 (2005)
- Dixit M, Subbanna GN, Kamath PV, J. Mater. Chem., 6, 1429 (1996)
- Jayashree RS, Kamath PV, J. Mater. Chem., 9, 961 (1999)
- Hu ZA, Xie YL, Wang YX, Xie LJ, Fu GR, Jin XQ, Zhang ZY, Yang YY, Wu HY, J. Phys. Chem. C, 113, 12502 (2009)
- Hou L, Yuan C, Yang L, Shen L, Zhang F, Zhang X, CrystEngComm, 13, 6130 (2011)
- Suksomboon M, Srimuk P, Krittayavathananon A, Luanwuthi S, Sawangphruk M, R. Soc. Chem. Adv., 4, 56876 (2014)
- Gupta V, Kusahara T, Toyama H, Gupta S, Miura N, Electrochem. Commun., 9, 2315 (2007)
- Koza JA, Hull CM, Liu YC, Switzer JA, Chem. Mater., 25, 1922 (2013)
- Song F, Hu XL, J. Am. Chem. Soc., 136(47), 16481 (2014)
- Zhang YX, Xiao QQ, Guo X, Zhang XX, Xue YF, Jing L, Zhai X, Yan YM, Sun KN, J. Power Sources, 278, 464 (2015)