화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.37, 237-242, May, 2016
Kinetic modeling and energy evaluation of sodium dodecylbenzenesulfonate photocatalytic degradation in a new LED reactor
E-mail:
Photocatalysis is an effective technology for the removal of organic pollutants from wastewater. Artificial light sources are still required for continuous operation, representing a large fraction of the operating costs. Thus, energy efficiency becomes a key issue that needs optimization. In this work, the performance of a novel upgraded Light Emitting Diodes (LED) reactor was studied varying the radiation applied. The evaluation was based on the degradation yield of the surfactant sodium dodecylbenzenesulfonate (SDBS) and on the energy requirement, determined by the parameter ‘‘Electrical Energy per Order’’ (EEO). The best SDBS removal, 94% after 480 min, was attained using 27.5 mW cm-2. Nevertheless, the best energy consumption was for 3.22 mW cm-2, with an EEO of 47.5 kW h m-3 order-1. Moreover, the hydroxyl radicals (·OH) generated were quantified and a three-region kinetic model considering radiation was proposed. 92% of the simulated results fell within [·OH]gen,exp ± 15% [·OH]gen,exp. Furthermore, a comparison with a 1st generation LED reactor and a Hg lamp reactor was carried out. The last one showed the highest performance, achieving complete SDBS removal after 360 min; however, its energy requirement was one order of magnitude higher than that of the upgraded LED reactor.
  1. Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios L, Mantzavinos D, J. Chem. Technol. Biotechnol., 83(6), 769 (2008)
  2. Kumar J, Bansal A, Mater. Sci. Forum, 764, 130 (2013)
  3. Wankhade AV, Gaikwad GS, Dhonde MG, Khat NT, Thakare SR, Res. J. Chem. Environ., 17, 84 (2013)
  4. Primo O, Rivero MJ, Ortiz I, J. Hazard. Mater., 153(1-2), 834 (2008)
  5. Primo O, Rueda A, Rivero MJ, Ortiz I, Ind. Eng. Chem. Res., 47(3), 946 (2008)
  6. Lee SY, Park SJ, J. Ind. Eng. Chem., 19(6), 1761 (2013)
  7. Chatterjee D, Dasgupta S, J. Photochem. Photobiol. C, 6, 186 (2005)
  8. Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ, Chem. Eng. J., 169(1-3), 126 (2011)
  9. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD, Appl. Catal. B: Environ., 125, 331 (2012)
  10. Spasiano D, Marotta R, Malato S, Fernandez-Ibanez P, Somma ID, Appl. Catal. B: Environ., 170-171, 90 (2015)
  11. Li J, Li B, Li J, Liu J, Wang L, Zhang H, Zhang Z, Zhao B, J. Ind. Eng. Chem., 25, 16 (2015)
  12. Jamali A, Vanraes R, Hanselaer P, Van Gerven T, Chem. Eng. Process., 71, 43 (2013)
  13. Lan Y, Lu Y, Ren Z, Nano Energy, 2, 1031 (2013)
  14. Lee H, Park YK, Kim SJ, Kim BH, Jung SC, J. Ind. Eng. Chem., 32, 259 (2015)
  15. Jo WK, Tayade RJ, Ind. Eng. Chem. Res., 53(6), 2073 (2014)
  16. Santiago-Morales J, Gomez MJ, Herrera-Lopez S, Fernandez-Alba AR, Garcıa-Calvo E, Rosal R, Water Res., 47, 5546 (2013)
  17. Ghosh JP, Langford CH, Achari G, J. Phys. Chem. A, 112(41), 10310 (2008)
  18. Yu L, Achari G, Langford CH, J. Environ. Eng.-ASCE, 139, 1146 (2013)
  19. Jo WK, Kang HJ, Chin. J. Catal., 33, 1672 (2012)
  20. Rasoulifard MH, Fazli M, Eskandarian MR, J. Ind. Eng. Chem., 24, 121 (2015)
  21. Kuipers J, Bruning H, Yntema D, Rijnaarts H, J. Photochem. Photobiol. A-Chem., 299, 25 (2015)
  22. De Lasa H, Serrano B, Salaices M, Photocatalytic Reaction Engineering, Springer, New York, 2005.
  23. Grcicı I, Li Puma G, Environ. Sci. Technol., 47, 13702 (2013)
  24. Chong MN, Jin B, Chow CWK, Saint C, Water Res., 44, 2997 (2010)
  25. McCullagh C, Skillen N, Adams M, Robertson PKJ, J. Chem. Technol. Biotechnol., 86(8), 1002 (2011)
  26. Dominguez S, Ribao P, Rivero MJ, Ortiz I, Appl. Catal. B: Environ., 178, 165 (2015)
  27. Fernandez-Castro P, Vallejo M, San Roman MF, Ortiz I, J. Chem. Technol. Biotechnol., 90(5), 796 (2015)
  28. Kochany J, Bolton JR, J. Phys. Chem., 95, 5116 (1991)
  29. Tai C, Peng JF, Liu JF, Jiang GB, Zou H, Anal. Chim. Acta, 527, 73 (2004)
  30. Yuan S, Mao X, Alshawabkeh AN, Environ. Sci. Technol., 46, 3398 (2012)
  31. Rivera-Utrilla J, Sanchez-Polo M, Bautista-Toledo MI, Mendez-Diaz JD, Chem. Eng. J., 180, 204 (2012)
  32. Hidaka H, Zhao J, Pelizzetti E, Serpone N, J. Phys. Chem., 96, 2226 (1992)
  33. Zhang TY, Oyama T, Horikoshi S, Zhao JC, Serpone N, Hidaka H, Appl. Catal. B: Environ., 42(1), 13 (2003)
  34. Zhang R, Gao L, Zhang Q, Chemosphere, 54, 405 (2004)
  35. Sanchez M, Rivero MJ, Ortiz I, Appl. Catal. B: Environ., 101(3-4), 515 (2011)
  36. Blesa MA, Sanchez B, Eliminacion de contaminantes por fotocatalisis heterogenea, CIEMAT, Madrid, 2004.
  37. Schwarz PF, Turro NJ, Bossmann SH, Braun AM, Wahab AM, Durr H, J. Phys. Chem. B, 101(36), 7127 (1997)
  38. Xiang QJ, Yu JG, Wong PK, J. Colloid Interface Sci., 357(1), 163 (2011)
  39. Daneshvar N, Rabbani M, Modirshahla N, Behnajady MA, J. Photochem. Photobiol. A-Chem., 168, 39 (2004)
  40. Wang ZM, Liu J, Dai YC, Dong WY, Zhang SC, Chen JM, Ind. Eng. Chem. Res., 50(13), 7977 (2011)
  41. Yu H, Zhang K, Rossi C, J. Photochem. Photobiol. A-Chem., 188, 65 (2007)
  42. Tanveer M, Guyer GT, Renew. Sust. Energ. Rev., 24, 534 (2013)
  43. Meng Y, Huang X, Wu Y, Wang X, Qian Y, Environ. Pollut., 117, 307 (2002)
  44. Bolton JR, Bircher KG, Tumas W, Tolman CA, J. Adv. Oxid. Technol., 1, 13 (1996)
  45. Alaton IA, Balcioglu IA, Bahnemann DW, Water Res., 36, 1143 (2002)
  46. Zoschke K, Dietrich N, Bornick H, Worch E, Water Res., 46, 5365 (2012)
  47. Lizama C, Freer J, Baeza J, Mansilla WD, Catal. Today, 76(2-4), 235 (2002)
  48. Urkude K, Thakare SR, Gawande S, J. Environ. Chem. Eng., 2, 759 (2014)
  49. Official website of the European Commission: http://ec.europa.eu/ (accessed 01.11.15).