화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.37, 347-353, May, 2016
Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12-LiTDI solid polymer electrolyte
E-mail:
In the present study, poly(ethylene oxide) (PEO) complexed with lithium 2-trifluoromethyl-4,5- dicyanoimidazole (LiTDI) nanocomposite solid polymer electrolyte membranes (NSPEMs) have been prepared by solution cast technique using different weight percent of nano-sized TiO2 ceramic filler. The effect of filler incorporation on the structural, thermal, mechanical and ionic conductivity properties of solid polymer electrolytes have analyzed. X-ray diffraction (XRD) and polarized optical microscopy (POM) results indicated that the crystallinity has been reduced remarkably with the incorporation of TiO2 nanofiller. The thermal stability and mechanical integrity of the nanocomposite polymer electrolyte system increased significantly compared to filler free electrolytes. The maximum ionic conductivity is found to be in the range of 2.11 × 10-5 S cm-1 for 8 wt% TiO2 nanofiller in PEO12-LiTDI electrolyte system. These results indicated that the prepared TiO2 based nanocomposite membrane would be a promising alternative separator for rechargeable lithium-ion battery applications.
  1. Polu AR, Rhee HW, J. Ind. Eng. Chem., 31, 323 (2015)
  2. Smitha B, Sridhar S, Khan AA, J. Membr. Sci., 259(1-2), 10 (2005)
  3. Nawaz A, Sharif R, Rhee HW, Singh PK, J. Ind. Eng. Chem., 33, 381 (2016)
  4. Goodenough JB, Park KS, J. Am. Chem. Soc., 135(4), 1167 (2013)
  5. Park DY, Park DY, Lan Y, Lim YS, Kim MS, J. Ind. Eng. Chem., 15(4), 588 (2009)
  6. Singh R, Bhattacharya B, Rhee HW, Singh PK, Int. J. Hydrog. Energy, 40(30), 9365 (2015)
  7. Ketabi S, Lian K, Electrochim. Acta, 154, 404 (2015)
  8. Niedzicki L, Kasprzyk M, Kuziak K, Zukowska GZ, Marcinek M, Wieczorek W, Armand M, J. Power Sources, 196(3), 1386 (2011)
  9. McOwen DS, Delp SA, Henderson WA, 224th ECS Meeting. MA2013-02, 2013, p. 1182.
  10. Polu AR, Rhee HW, Kim DK, J. Mater. Sci. -Mater. Electron., 26, 8548 (2015)
  11. McOwen DW, Delp SA, Paillard E, Herriot C, Han SD, Boyle PD, Sommer RD, Henderson WA, J. Phys. Chem. C, 118, 7781 (2014)
  12. Scheers J, Niedzicki L, Zukowska GZ, Johansson P, Wieczorek W, Jacobsson P, Phys. Chem. Chem. Phys., 113, 11136 (2011)
  13. Ribiere P, Grugeon S, Morcette M, Boyanov S, Laruelle S, Marlair G, Energy Environ. Sci., 5, 5271 (2012)
  14. Vignarooban K, Dissanayake MAKL, Albinsson I, Mellander BE, Solid State Ion., 266, 25 (2014)
  15. Stephan AM, Nahm KS, Polymer, 47(16), 5952 (2006)
  16. Agrawal RC, Pandey GP, J. Phys. D-Appl. Phys., 41, 223001 (2008)
  17. Lin CW, Hung CL, Venkateswarlu M, Hwang BJ, J. Power Sources, 146(1-2), 397 (2005)
  18. Kim KM, Park NG, Ryu KS, Chang SH, Polymer, 43(14), 3951 (2002)
  19. Kim KS, Park SJ, Solid State Ion., 212, 18 (2012)
  20. Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta E, J. Power Sources, 97, 644 (2001)
  21. Dey A, Karan S, De SK, Solid State Commun., 149, 1282 (2009)
  22. Polu AR, Kim DK, Rhee HW, Ionics, 21, 2771 (2015)
  23. Angulakhsmi N, Thomas S, Nair JR, Bongiovanni R, Gerbaldi C, Stephan AM, J. Power Sources, 228, 294 (2013)
  24. ElBellihi AA, Bayoumy WA, Masoud EM, Mousa MA, Bull. Korean Chem. Soc., 33, 2949 (2012)
  25. Lee L, Park SJ, Kim S, Solid State Ion., 234, 19 (2013)
  26. Guijie L, Jie XU, Weilin XU, Xiaolin S, Zhikui B, Mu Y, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 27, 495 (2012)
  27. Xi JY, Qiu XP, Wang JS, Bai YX, Zhu WT, Chen LQ, J. Power Sources, 158(1), 627 (2006)
  28. Rajendran S, Kannan R, Mahendran O, J. Power Sources, 96(2), 406 (2001)
  29. Ramesh S, Yuen TF, Shen CJ, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 69, 670 (2008)
  30. Tang Z, Wang JM, Chen QQ, He WC, Shen C, Mao XX, Zhang JQ, Electrochim. Acta, 52(24), 6638 (2007)
  31. Sundar M, Selladurai S, Ionics, 12, 281 (2006)
  32. Niedzicki L, Zukowska GZ, Bukowska M, Szczecinski P, Grugeon S, Laruelle S, Armand M, Panero S, Scrosati B, Marcinek M, Wieczorek W, Electrochim. Acta, 55(4), 1450 (2010)
  33. Rocco AM, Bielschowsky CE, Pereira RP, Polymer, 44(2), 361 (2003)
  34. Frech R, Chintapalli S, Bruce PG, Vincent CA, Macromolecules, 32(3), 808 (1999)
  35. Ibrahim S, Yassin MM, Ahmad R, Johan MR, Ionics, 17, 399 (2011)
  36. Jayanthi S, Kulasekarapandian K, Arulsankar A, Sankaranarayanan K, Sundaresan B, J. Compos. Mater., 49, 1035 (2015)
  37. Aravindan V, Vickraman P, Krishnaraj K, Curr. Appl. Phys., 9(6), 1474 (2009)
  38. Zhu K, Liu Y, Liu J, RSC Adv., 4, 42278 (2014)
  39. Croce F, Settimi L, Scrosati B, Electrochem. Commun., 8, 364 (2006)
  40. Choi BK, Shin KH, Solid State Ion., 86-88, 303 (1996)
  41. Wieczorek W, Zalewska A, Raducha D, Florjanczyk Z, Stevens JR, Ferry A, Jacobsson P, Macromolecules, 29(1), 143 (1996)
  42. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R, J. Phys. Chem. B, 103(48), 10632 (1999)
  43. Kumar B, Scanlon LG, Solid State Ion., 124(3-4), 239 (1999)
  44. Chu PP, Reddy MJ, J. Power Sources, 115(2), 288 (2003)
  45. Wieczorek W, Florjanczyk Z, Stevens JR, Electrochim. Acta, 40(13-14), 2251 (1995)
  46. Polu AR, Kumar R, Bull. Mat. Sci., 37, 309 (2014)
  47. Ravi M, Song S, Gu K, Tang J, Zhang Z, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 195, 74 (2015)
  48. Niitani T, Shimada M, Kawamura K, Dokko K, Rho YH, Kanamura K, Electrochem. Solid State Lett., 8(8), A385 (2005)