화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.37, 380-389, May, 2016
Preparation of N-functionalized TiO2 particles using one-step sol-gel method and their photocatalytic activity
E-mail:
Nitrogen functionalized TiO2 (N-TiO2) particles having an excellent dispersibility were prepared by sol-gel method. Generally, N-TiO2 particles have been made at the harsh preparation conditions including either high temperature or high pressure with nitrogen sources. However, in this research, N-TiO2 particles were prepared through facile sol-gel reaction with titanium(IV) (triethanolaminato)-isopropoxide (TTEAIP) precursor at mild conditions. The diameter of titania spheres could be tunable from 250 to 2200 nm by varying TTEAIP concentrations. Photocatalytic performances of N-TiO2 were examined through the degradation of methylene blue. N-TiO2 particles exhibited 3-10 times better performance of methylene blue photodegradation than that of commercial P25.
  1. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  2. Mills A, Le Hunte S, J. Photochem. Photobiol. A-Chem., 108, 1 (1997)
  3. Green MA, Solar Cells: Operating Principles, Technology, and System Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.
  4. O’regan B, Gratzel M, Nature, 353, 737 (1991)
  5. Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
  6. Ni M, Leung MK, Leung DY, Sumathy K, Renew. Sust. Energ. Rev., 11, 401 (2007)
  7. Fujishima A, Honda K, Nature, 238, 37 (1972)
  8. Carp O, Huisman CL, Reller A, Prog. Solid State Chem., 32, 33 (2004)
  9. Fernandez A, Lassaletta G, Jimenez VM, Justo A, Gonzalezelipe AR, Herrmann JM, Tahiri H, Aitichou Y, Appl. Catal. B: Environ., 7(1-2), 49 (1995)
  10. Herrmann JM, Tahiri H, Aitichou Y, Lassaletta G, Gonzalezelipe AR, Fernandez A, Appl. Catal. B: Environ., 13(3-4), 219 (1997)
  11. Zhang DF, Zeng FB, Appl. Surf. Sci., 257(3), 867 (2010)
  12. Jiang J, Zhang L, Li H, He W, Yin JJ, Nanoscale, 5, 10573 (2013)
  13. Leghari SAK, Sajjad S, Zhang J, RSC Adv., 4, 5248 (2014)
  14. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269 (2001)
  15. Anpo M, Pure Appl. Chem., 72, 1787 (2000)
  16. Fuerte A, Hernandez-Alonso MD, Maira AJ, Martinez-Arias A, Fernandez-Garcia M, Conesa JC, Soria J, Chem. Commun., 2718 (2001)
  17. Jang I, Song K, Park JH, Kim M, Kim DW, Oh SG, Mater. Lett., 96, 214 (2013)
  18. Sajjad S, Leghari SAK, Zhang J, RSC Adv., 3, 12678 (2013)
  19. Wang P, Yi Q, Xing M, Zhang J, Phys. Chem. Chem. Phys., 17, 21982 (2015)
  20. Ohno T, Mitsui T, Matsumura M, Chem. Lett., 32(4), 364 (2003)
  21. Sato S, Chem. Phys. Lett., 123, 126 (1986)
  22. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S, Appl. Catal. B: Environ., 42(4), 403 (2003)
  23. Naik B, Parida KM, Gopinath CS, J. Phys. Chem. C, 114, 19473 (2010)
  24. Asahi R, Morikawa T, Irie H, Ohwaki T, Chem. Rev., 114(19), 9824 (2014)
  25. Jiang J, Oberdorster G, Biswas P, J. Nanopart. Res., 11, 77 (2009)
  26. Jang I, Park JH, Song K, Kim L, Lee Y, Oh SG, Mater. Chem. Phys., 147(3), 691 (2014)
  27. Upadhyay RH, Argekar AP, Deshmukh RR, Bull. Mat. Sci., 37, 481 (2014)
  28. Morales BA, Novaro O, Lopez T, Sanchez E, Gomez R, J. Mater. Res., 10, 2788 (1995)
  29. Yoldas BE, Appl. Opt., 21, 2960 (1982)
  30. Yoldas BE, J. Mater. Sci. Lett., 21, 1087 (1986)
  31. Jun YW, Lee SM, Kang NJ, Cheon J, J. Am. Chem. Soc., 123(21), 5150 (2001)
  32. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T, Chem.-Eur. J., 11, 440 (2005)
  33. LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847 (1950)
  34. Yeung KL, Yau ST, Maira AJ, Coronado JM, Soria J, Yue PL, J. Catal., 219(1), 107 (2003)
  35. Huang D, Liao S, Quan S, Liu L, He Z, Wan J, Zhou W, J. Mater. Res., 22, 2389 (2007)
  36. Primet M, Pichat P, Mathieu MV, J. Phys. Chem., 75, 1216 (1971)
  37. Huo YN, Jin Y, Zhu J, Li HX, Appl. Catal. B: Environ., 89(3-4), 543 (2009)
  38. Yang G, Jiang Z, Shi H, Xiao T, Yan Z, J. Mater. Chem., 20, 5301 (2010)
  39. Wang DH, Jia L, Wu XL, Lu LQ, Xu AW, Nanoscale, 4, 576 (2012)
  40. Chen C, Bai H, Chang C, J. Phys. Chem. C, 111, 15228 (2007)
  41. Ananpattarachai J, Kajitvichyanukul P, Seraphin S, J. Hazard. Mater., 168(1), 253 (2009)
  42. Moulder JF, Chastain J, King RC, Handbook of X-ray Photoelectron Spectroscop: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin.Elmer, Eden Prairie, MN, 1992.
  43. Li HX, Li JX, Huo YI, J. Phys. Chem. B, 110(4), 1559 (2006)
  44. Simmons GW, Beard BC, J. Phys. Chem., 91, 1143 (1987)
  45. Battiston GA, Gerbasi R, Gregori A, Porchia M, Cattarin S, Rizzi GA, Thin Solid Films, 371(1-2), 126 (2000)
  46. Saha NC, Tompkins HG, J. Appl. Phys., 72, 3072 (1992)
  47. Gyorgy E, Del Pino AP, Serra P, Morenza JL, Surf. Coat. Technol., 173, 265 (2003)
  48. Xu H, Zhang L, J. Phys. Chem. C, 113, 1785 (2009)
  49. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM, Appl. Catal. B: Environ., 31(2), 145 (2001)
  50. Herrmann JM, Catal. Sci. Ser., 1, 171 (1999)
  51. Roberts GW, Satterfield CN, Ind. Eng. Chem. Fundam., 4, 288 (1965)
  52. Kumar KV, Porkodi K, Rocha F, Catal. Commun., 9, 82 (2008)
  53. Poux M, Cognet P, Gourdon C, Green Process Engineering: From Concepts to Industrial Applications, CRC Press, 2015.
  54. Sakatani Y, Grosso D, Nicole L, Boissiere C, de GJ, Soler-Illia AA, Sanchez C, J. Mater. Chem., 16, 77 (2006)
  55. Wu CH, Chern JM, Ind. Eng. Chem. Res., 45(19), 6450 (2006)
  56. Shimizu N, Ogino C, Dadjour MF, Murata T, Ultrason. Sonochem., 14, 184 (2007)
  57. Daito S, Tochikubo F, Watanabe T, Jpn. J. Appl. Phys., 40, 2475 (2001)
  58. Turchi CS, Ollis DF, J. Catal., 122, 178 (1990)