- Previous Article
- Next Article
- Table of Contents
Macromolecular Research, Vol.24, No.6, 483-487, June, 2016
Nanopatterned bulk-heterojunction photovoltaic cells using polyurethane acrylate (PUA) film replica of colloidal crystal arrays via stamping transfer process
E-mail:,
Bulk heterojunction (BHJ) films with nanopattern structure have been fabricated using a stamping transfer process with polyurethane acrylate (PUA) replica film based on 3-dimensional colloidal crystals. The uniformly arrayed nanostructure of the PUA film was investigated by SEM analysis. Compared to the organic photovoltaic cells wtih plain BHJ of poly(3-hexylthiophene-2,5-diyl) (P3HT) and indene-C60 bisadduct (ICBA), the device from the nanopatterned BHJ exhibit improved E-field distribution intensity, as assessed using a finite-difference time-domain (FDTD) method. The current density (J SC ) and power conversion efficiency (PCE) of the device were respectively increased by up to 27% and 20% due to the enhanced interfacial contact area and plasmonic effect, which can brought about effective light harvesting between the BHJ active layer and cathode. Through a simple low-temperature transfer process using a PUA mold, we can fabricate reproducible nanopatterned BHJ devices that have improved light absorption within the active layer of the devices.
Keywords:bulk-heterojunction;nanopattern;organic photovoltaic cells;plasmonic effect;stamping transfer process
- Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 258, 1474 (1992)
- Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
- Heeger AJ, Angew. Chem.-Int. Edit., 40, 2591 (2001)
- Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC, Nat. Mater., 6(7), 497 (2007)
- Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ, Nat. Photonics, 3, 297 (2009)
- Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC, Adv. Funct. Mater., 11(5), 374 (2001)
- Peet J, Heeger AJ, Bazan GC, Acc. Chem. Res., 42, 1700 (2009)
- Servaites JD, Yeganeh S, Marks TJ, Ratner MA, Adv. Funct. Mater., 20(1), 97 (2010)
- Zhao GJ, He YJ, Li YF, Adv. Mater., 22(39), 4355 (2010)
- Cheng P, Li Y, Zhan X, Energy Environ. Sci., 7, 2005 (2014)
- Leem JW, Kim SH, Lee SH, Rogers JA, Kim EK, Adv. Eng. Mater., 4, 130131 (2014)
- Kim SH, Koh JH, Chi WC, Park CH, Leem JW, Kim BG, Seo SJ, Kim YN, Yu JS, Kim JH, Kim EK, Adv. Eng. Mater., 4, 130133 (2014)
- Jeong SJ, Cho CS, Kang HB, Kim KH, Yuk YJ, Park JY, Kim BJ, Lee JY, ACS Nano, 9, 2773 (2015)
- Leem JW, Kim SH, Park CH, Kim EK, Yu JS, ACS Appl. Mater. Interfaces, 7, 6706 (2015)
- Wang DH, Kyaw AKK, Du QG, Choi DG, Park JH, Org. Electron., 15, 3120 (2014)
- Yang J, You J, Chen CC, Hsu WC, Tan H, Zhang XW, Hong Z, Yang Y, ACS Nano, 5, 6210 (2011)
- Choi SJ, Yoo PJ, Baek SJ, Kim TW, Lee HH, J. Am. Chem. Soc., 126(25), 7744 (2004)
- Yi GR, Moon JH, Yang SM, Chem. Mater., 13, 2613 (2001)
- Kim JH, Chainey M, El-Aasser MS, Vanderhoff JW, J. Polym. Sci. A: Polym. Chem., 30, 171 (1992)
- Kim MH, Park OO, Microelectron. Eng., 91, 121 (2012)
- Choi HK, Kim MH, Im SH, Park OO, Adv. Funct. Mater., 19(10), 1594 (2009)
- Wang DH, Choi DG, Lee KJ, Jeong JH, Jeon SH, Park OO, Park JH, Org. Electron., 11, 285 (2010)
- Na SI, Kim SS, Jo J, Oh SH, Kim J, Kim DY, Adv. Funct. Mater., 18(24), 3956 (2008)
- Lee JH, Kim DW, Jang H, Choi JK, Geng J, Jung JW, Yoon SC, Jung HT, Small, 5, 2139 (2009)
- Choi DG, Lee KJ, Jeong JH, Wang DH, Park OO, Park JH, Sol. Energy Mater. Sol. Cells, 109, 1 (2013)
- Atwater HA, Polman A, Nat. Mater., 9(3), 205 (2010)
- Lee HK, Jeon JH, Wang DH, Park OO, Kim JK, Im SH, Park JH, Appl. Phys. Lett., 94, 103304 (2010)
- Wang DH, Seifter J, Park JH, Choi DG, Heeger AJ, Adv. Eng. Mater., 2, 1319 (2012)
- Tvingstedt K, Persson NK, Inganas O, Appl. Phys. Lett., 91, 113514 (2007)