화학공학소재연구정보센터
Clean Technology, Vol.22, No.2, 106-113, June, 2016
실내오염물질 제거용 광촉매의 제조조건에 따른 반응활성 연구
Production Conditions of the Photo-catalyst for Removing Indoor Pollutants
E-mail:
초록
본 연구에서는 UV 광을 이용하여 CO, C2H5OH 및 H2S에 해당하는 오염물질을 제어하기 위한 광촉매 연구를 수행하였다. 제조된 촉매들이 동일한 체적 및 표면적의 경우에는 촉매 구조 내부까지 UV 광이 조사될 수 있는 구조에서 우수한 반응활성을 보였다. 하지만 이러한 광촉매 TiO2의 CO에 대한 반응활성은 매우 저조하였으며, 이는 귀금속 계열의 Pt를 첨가하여 환원공정을 수행함으로써 해결할 수 있다. 특히 이러한 Pt/TiO2 광촉매는 환원공정을 통하여 표면 Pt0의 종의 생성 및 증가시킬 수 있으며, 이를 통해 CO의 반응활성이 우수해 짐을 확인하였다.
This study was performed to study the photocatalyst for controlling the pollutant such as CO, C2H5OH and H2S by the UV light. This was shown in a catalyst having the same volume and the same surface area, that the structure in which the UV light to reach the interior structure exhibits more excellent activity. However, the activity of this activity of this photocatalyst removal of CO was very low. This problem can be solved by performing a reduction process by the addition of the precious metal series of Pt. Particularly, the amount of chemical species Pt0 incerased in the surface of Pt/TiO2 photocatalyst through the reduction process, which make the reaction activity of photocatalyst excellent to the removal of the CO.
  1. Kim YS, “A Studies of Indoor Air Quality Management Plan,” Ministry of Environment (2004).
  2. Kim YC, “Photodegradation of Fotmaldehyde using TiO2 Photocatalyst on UV,” Yong-in Univ., M. S. Thesis (2004).
  3. Wold A, Chem. Mater., 5(3), 280 (1993)
  4. J. Photochem. Photobiol. C-Photochem. Rev.
  5. Matthews RW, J. Chem. Soc.-Perkin Trans. 1, 80, 457 (1984)
  6. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  7. Kleiser G, Frimmel FH, Sci. Total Environ., 256(1), 1 (2000)
  8. Peral J, Ollis FD, J. Catal., 136, 554 (1992)
  9. Alberici RM, Jardim WE, Appl. Catal. B: Environ., 14(1-2), 55 (1997)
  10. Yang WH, Son BS, Yim SK, Korean. J. Environ. Health., 33, 255 (2007)
  11. Lim HJ, “Development of Removal System of Odors and Float Bacteria in Stall,” Ministry of Agriculture and Forestry, (2002).
  12. Kim SB, Jang HT, Hong SC, J. Ind. Eng. Chem., 8(2), 156 (2002)
  13. Glaze WH, Eckenfelder WW, Bowers AR, Roth JA, Technomic Publishing, Lancaster and Basel, 3, 1 (1993)
  14. Zhan SH, Chen DR, Jiao XL, Tao CH, J. Phys. Chem. B, 110(23), 11199 (2006)
  15. Kozlova EA, Lyubina TP, Nasalevich MA, Vorontsov AV, Miller AV, Kaichev VV, Parmon VN, Catal. Commun., 12, 597 (2011)
  16. Obee TN, Brown RT, Environ. Sci. Technol., 29, 1223 (1995)
  17. Seo PW, Choi HJ, Hong SI, Hong SC, J. Hazard. Mater., 178(1-3), 917 (2010)
  18. Kwon DW, Seo PW, Kim GJ, Hong SC, Appl. Catal. B: Environ., 163, 436 (2015)
  19. Goodman DW, Catal. Lett., 99(1-2), 1 (2005)
  20. Huang HB, Leung DYC, J. Catal., 280(1), 60 (2011)