화학공학소재연구정보센터
Polymer(Korea), Vol.40, No.4, 533-538, July, 2016
비상용성 PC/ABS 블렌드의 물성에 미치는 ABS 함량과 GO의 영향
Effect of ABS Content and GO on the Physical Properties of Immiscible PC/ABS Blend
E-mail:
초록
본 연구에서는 비상용성 폴리카보네이트(polycarbonate, PC)/아크릴로니트릴-부타디엔-스티렌 공중합체(acrylonitrile-butadiene-styrene, ABS)의 ABS 함량에 따른 분산상의 변화와 그래핀 옥사이드(graphene oxide, GO)의 첨가에 따른 물성 변화를 고찰하였다. ABS 함량을 30, 50, 70 wt%로 변화시켜 PC-GO/ABS 복합체를 이축압출기(twin screw extruder)를 이용하여 다음과 같이 2단계로 제조하였다. 1단계에서 PC/GO 예비 복합체를 260 oC 압출온도로 제조한 후, 2단계에서 GO의 함량이 0.5 wt%가 되도록 1단계에서 제조한 PC/GO 예비 복합체를 이용하여 PC-GO/ABS 복합체를 압출온도 240 oC에서 제조하였다. ABS 함량에 따른 PC-GO/ABS 복합체 내의 ABS 상의 구조가 ABS 함량에 따라 sea-island, co-continuous, 그리고 역 sea-island 구조로 변화는 것을 SEM과 TEM 사진을 통해 확인하였다. PC-GO/ABS 복합체의 충격강도는 ABS 함량이 30 wt%와 50 wt%일 때 증가하였으며, 이는 GO의 계면에서의 상용화 효과와 ABS 상에서의 보강효과에 의한 것으로 해석할 수 있고, GO의 위치는 TEM을 이용하여 확인하였다. 또한 PC-GO/ABS 복합체의 전단박하 현상과 탄성특성 변화로부터 GO의 위치를 간접적으로 확인할 수 있었다.
In this study the effects of adding GO and the change of ABS phase content on the physical properties of immiscible polycarbonate (PC)/poly(acrylonitrile-butadiene-styrene) (ABS) blends were discussed. The PC-GO/ABS composites were fabricated by using a twin screw extruder as two steps. PC/ABS blends were set at the weight ratios of 70/30, 50/50, and 30/70. First of all PC/GO composite was fabricated at 260 oC. And then the PC-GO/ABS composites were manufactured by using an extruder at 240 oC. The GO of 0.5 wt% was inserted by PC/GO composite for all samples. It was confirmed by SEM and TEM that the ABS phase structures were changed from sea-island to inverse sea-island with increasing ABS content. The izod impact strength increased with adding GO when the contents of ABS were 30 and 50 wt%. It is interpreted by the reinforced ABS phase and compatibilizing effect of GO at the interface between PC and ABS. In the TEM images, most GO were located in the interface and ABS phase. GO location was checked indirectly by shear thinning effect and storage modulus of PC-GO/ABS composites.
  1. Paul DR, Newman S, Polymer Blends, Academic, New York, USA, Vol 2 (1978).
  2. Jordhamo GM, Manson JA, Sperling LH, Polym. Eng. Sci., 26, 517 (1986)
  3. Utracki LA, Polym. Eng. Sci., 35(1), 2 (1995)
  4. Keith JD, Barlow JW, Paul DR, J. Appl. Polym. Sci., 29, 3131 (1984)
  5. Stokes VK, Hobbs SY, Polymer, 34, 1222 (1993)
  6. Quitens D, Groenickx G, Guest M, Aerts L, Polym. Eng. Sci., 30, 1474 (1990)
  7. Hosseinpour PM, Morshedian J, Barikani M, Azizi H, Pakdaman AS, J. Vinyl Additive Technology, 16, 127 (2010)
  8. Lee C, Wei W, Kysar JW, Hone J, Science, 321, 385 (2008)
  9. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff PS, Nature, 442, 282 (2006)
  10. Aimin Z, Chao L, Eur. Polym. J., 39, 1291 (2003)
  11. Yasmin A, Luo JJ, Daniel IM, Compos. Sci. Technol., 66, 1182 (2006)
  12. Kim ST, Choi HJ, Appl. Chem., 9(1), 13 (2005)
  13. Ding P, Su S, Song N, Tang S, Liu Y, Shi L, Carbon, 66, 576 (2014)
  14. Pour RH, Hassan A, Soheilmoghaddam M, Bidsorkhi HC, Polym. Compos., 37, 1633 (2016)
  15. Cao Y, Zhang J, Feng J, Wu P, ACS Nano, 5, 5920 (2011)
  16. Lee SC, Kim HS, Hong IK, Yoon YS, Korean J. Rheol., 9(4), 133 (1997)
  17. Wu DF, Zhang YS, Zhang M, Yu W, Biomacromolecules, 10(2), 417 (2009)