화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.179, No.5, 753-775, 2016
Reliable Selection and Holistic Stability Evaluation of Reference Genes for Rice Under 22 Different Experimental Conditions
Stable and uniform expression of reference genes across samples plays a key role in accurate normalization of gene expression by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). For rice study, there is still a lack of validation and recommendation of appropriate reference genes with high stability depending on experimental conditions. Eleven candidate reference genes potentially owning high stability were evaluated by geNorm and NormFinder for their expression stability in 22 various experimental conditions. Best combinations of multiple reference genes were recommended depending on experimental conditions, and the holistic stability of reference genes was also evaluated. Reference genes would become more variable and thus needed to be critically selected in experimental groups of tissues, heat, 6-benzylamino purine, and drought, but they were comparatively stable under cold, wound, and ultraviolet-B stresses. Triosephosphate isomerase (TI), profilin-2 (Profilin-2), ubiquitin-conjugating enzyme E2 (UBC), endothelial differentiation factor (Edf), and ADP-ribosylation factor (ARF) were stable in most of our experimental conditions. No universal reference gene showed good stability in all experimental conditions. To get accurate expression result, suitable combination of multiple reference genes for a specific experimental condition would be a better choice. This study provided an application guideline to select stable reference genes for rice gene expression study.