화학공학소재연구정보센터
Applied Surface Science, Vol.376, 10-15, 2016
DC sputtering assisted nano-branched core-shell TiO2/ZnO electrodes for application in dye-sensitized solar cells
TiO2/ZnO core-shell photo-anodes with a large surface area were synthesised by a combination of chemical growth and direct current (DC) magnetron sputtering (MS). The use of these combined methods for the advancement of dye-sensitized solar cells (DSSCs) was discussed. An understanding of the morphology and structure of this core-shell material was obtained from the use of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the thickness of the ZnO nanoshells (as assessed by using TEM), prepared by MS, has a significant effect on improvements in the conversion efficiency. The conversion efficiency can be greatly improved from 0.06% to 0.72% by optimising different experimental conditions, such as ZnO nanoshell MS time and chemical bath deposition time. The enhanced efficiency may be attributed to the emergence of a ZnO energy barrier and the improvement of the photo-anode surface area. (C) 2016 Published by Elsevier B.V.