Applied Surface Science, Vol.377, 253-261, 2016
Enhanced magnetic and photocatalytic properties of Bi2Fe4O9 semiconductor with large exposed (001) surface
Magnetic photocatalysts have attracted an increasing attention for photodegradation of organic containments and easy recycling. In this work, magnetic, single-crystalline Bi2Fe4O9 samples have been synthesized through a facile hydrothermal process and the morphologies were modulated by adjusting the Bi3+/Fe3+ precursor molar ratio and NaOH concentration. The most well crystalline Bi2Fe4O9 nanoplates were formed by self-assembled anisotropic growth along the (001) plane, with large exposed (001) surface. The Bi2Fe4O9 nanoplates exhibit excellent photocatalytic degradation of rhodamine b (RhB) under visible light irradiation with the assistant of a small amount of H2O2. The excellent photocatalytic performance of the Bi2Fe4O9 nanoplates was ascribed to the lower recombination rate of the photogenerated electrons and holes on the (001) surface, which was confirmed by detecting the hydroxyl radicals. In addition, Bi2Fe4O9 samples exhibit morphology-dependent magnetic properties. The mechanisms of morphology-dependent magnetic, photoadsorbing and photocatalytic properties of Bi2Fe4O9 crystals are discussed systematically. The magnetic Bi2Fe4O9 photocatalyst allows efficient utilization of solar energy and possible catalyst recovery via magnetically-enhanced gravity separation. (C) 2016 Elsevier B.V. All rights reserved.