Applied Surface Science, Vol.379, 14-22, 2016
Surface reactivity of Ge[111] for organic functionalization by means of a radical -initiated reaction: A DFT study
The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the hydrogen-terminated Ge[111] surface is less promising than its two-dimensional analogue, the hydrogen-terminated germanene. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Organic functionalization;Organic molecules;Radical-initiated reaction;Germanium;Germanene Hydrogen vacancy