Fuel Processing Technology, Vol.150, 104-116, 2016
A computationally efficient multi-scale simulation of a multi-stage fixed-bed reactor for methanol to propylene reactions
A multi-scale model incorporating interphase and intraparticle mass and heat transfer was established for a multi-stage fixed-bed reactor for methanol to propylene (MTP) process with recycle of. the undesired olefins other than propylene. By converting the catalyst dimension and reactor dimension into a pseudo two-dimension and solving the resulting model by a hybrid method of Matlab and Comsol, the computation efficiency is 5 times higher than the conventional one that solves separately the single catalyst dimension at different reactor position. The model was validated by experimental data obtained from a lab-scale isothermal fixed-bed reactor. The calculated results show that propylene selectivity and methanol conversion achieve 62.6% and 99.99%, respectively, with space velocity of 0.741 g(MeOH/gcat/h), which agree well with the practical data from a commercial six-stage Lurgi reactor with a capacity of 500 KTY propylene. It was found furthermore that the intraparticle diffusion resistance is notable and the contact time of reactant fluid is too long, resulting in a low propylene selectivity of the present commercialized MTP reactor, thus decreasing catalyst size, stage number and contact time will effectively promote propylene selectivity. (C) 2016 Elsevier B.V. All rights reserved.