Inorganic Chemistry, Vol.55, No.9, 4421-4427, 2016
On the Potential of Using the Al-7 Superatom as an Excess Electron Acceptor To Construct Materials with Excellent Nonlinear Optical Properties
With the aid of density functional theory (DFT) calculations, we found that, when alkali metal approaches the Al-7 superatom, its outermost s-value electron can be trapped by Al7 to give the superatom compound MAl7 (M = Li, Na, K) with an excess electron. Different analyses including natural bond orbital (NBO), electron localization function (ELF), and energy decomposition analysis (EDA) show that the resulting M-Al bond is strong and has a polar covalent character. The optimizations of self-assemblies (MAl7)(n) (n = 2, 3) have been performed to explore the stability of MAl7 in the solid state. The results reveal that only NaAl7 can keep its structural integrity as a building block upon self-assembling, while serious aggregations between Al7 clusters occur in the dimers and trimers of LiAl7 and KAl7, despite the fact that the Li-Al-7 and K-Al-7 bond energies are comparable to that of Na-Al-7. Born-Oppenheimer molecular dynamics (BOMD) simulations for (NaAl7)n (n = 2, 3) indicate that these species are stable toward fragmentation at 300 K. The beta 0 values of (NaAl7)n (n = 1, 2, and 3) predicted at the CAM-B3LYP/6-311+G(3df) level of theory are in the range of 1.6 x 10(4)a.u. to 7.5 x 10(4) a.u.. This theoretical study implies that NaAl7 is a promising candidate for nolinear optical (NLO) materials. We provide theoretical evidence for the possibility of using the Al7 superatom as an excess electron acceptor to construct materials with excellent NLO properties. Further experimental research is invited.