화학공학소재연구정보센터
Inorganic Chemistry, Vol.55, No.11, 5549-5557, 2016
y Magnetic Anisotropy in Functionalized Bipyridyl Cryptates
The magnetic properties of molecular lanthanoid complexes are very important for a variety of scientific and technological applications, with the unique magnetic anisotropy being one of the most important features. In this context, a very rigid tris(bipyridine) cryptand was synthesized with a primary amine functionality for future bioconjugation. The magnetic anisotropy was investigated for the corresponding paramagnetic ytterbium cryptate. With the use of a combination of density functional theory calculations and lanthanoid-induced NMR shift analysis, the magnetic susceptibility tensor was determined and compared to the unfunctionalized cryptate analogue. The size and orientation of the axial and rhombic tensor components show remarkably great resilience toward the decrease of local symmetry around the metal and anion exchange in the inner coordination sphere. In addition, the functionalized ytterbium cryptate also exhibits efficient near-IR luminescence.