화학공학소재연구정보센터
Polymer(Korea), Vol.22, No.5, 741-748, September, 1998
Amphiphilic Acrylate 수화겔의 제조와 pH 변화에 따른 팽윤거동
Preparation and Swelling Behavior of Acrylate Hydrogels with Amphiphilic Groups Depending on pH
초록
곁사슬에 서로 다른 양의 친수성기(COO-)와 소수성기(CH2)를 가지는 고분자들을 여러 가지 가교도를 가지도록 acrylate 수화겔을 합성하고, 이들 수화겔에 대하여 여러 가지 pH 범위에서 팽윤될 때 그 부피 변화를 관찰하여 가교제 농도변화의 영향과 pH 의존성에 대하여 조사하였다. 가교제 농도가 증가할수록 가교점간의 분자량이 감소하며 겔의 팽윤을 억제하는 고무 탄성력이 상대적으로 커져 흡수력이 떨어지게 되어 팽윤비가 감소함을 알 수 있었다. 또한 각 pH 영역에서 곁사슬의 이온화도의 증·감의 변화와 친수성기와 소수성기간의 상호작용으로 인한 삼투압의 변화에 의해 다양한 팽윤비 변화를 알 수 있었다.
Hydrogels of crosslinked polyacrylates containing various amounts of hydrophilic(COO-) and hydrophobic (CH2) groups were prepared. The degree oi crosslinking was controlled by the amount of crosslinking agent used. The effect of crosslinking densify and pH on the volume changes of hydrogels were investigated. As the concentration of crosslinking agent was increased, Mw between crosslink points decreased and absorption capability also decreased due to increasing elasticity which suppressed gel swelling. These caused the reduction of swelling ratio. Osmotic pressure was dependent on the interaction between hydrophilic and hydrophobic groups and the degree of ionization of side chains. Change of osmotic pressure caused the change of swelling ratio.
  1. Ferry JD, "Viscoelastic Properties of Polymer," 3rd Edn., John Wiley, New York (1980)
  2. Flory PJ, "Principle of Polymer Chemistry," Cornell University Press, Ithaca, NY (1953)
  3. Tanaka T, Sci. Am., 249(1), 124 (1981)
  4. Tanaka T, Fillmore D, Sun ST, Nishio I, Swislow G, Shah A, Phys. Rev. Lett., 45, 1636 (1980) 
  5. Hirokawa Y, Tanaka T, Sato E, Macromolecules, 18, 2782 (1985) 
  6. Ricka J, Tanaka T, Macromolecules, 17, 2916 (1984) 
  7. Okano T, Bae TH, Jacobs H, Kim SW, J. Control. Release, 11, 255 (1990) 
  8. akashi M, Saihata S, Yashima E, Sugita S, Marumo K, J. Polym. Sci. B: Polym. Phys., 31, 1153 (1993)
  9. Sakurai S, Hayashi H, Namada F, Polymer, 34(22), 4625 (1993) 
  10. Kudo S, Kosaka N, Konno M, Saito S, Polymer, 33(23), 5040 (1992) 
  11. Khare AR, Peppas NA, Polymer, 34(22), 4736 (1993) 
  12. Takigawa T, Urayama K, Morino Y, Masuda T, Polym. J., 25(19), 929 (1993) 
  13. Beltran S, Baker JP, Hooper HH, Blanch HW, Prausnitz JM, Macromolecules, 24, 549 (1991) 
  14. Bae YH, Okano T, Kim SW, J. Polym. Sci. B: Polym. Phys., 28, 923 (1990) 
  15. Ohmine I, Tanaka T, J. Chem. Phys., 77, 5725 (1982) 
  16. Amiya T, Hirokawa Y, Hirose Y, Li Y, Tanaka T, J. Chem. Phys., 86, 2375 (1987) 
  17. Tanaka T, Nishiho I, Sun ST, Ueno S, Science, 218, 467 (1982) 
  18. Peppas LB, Peppas NA, Chem. Eng. Sci., 46, 715 (1991) 
  19. Chujo Y, Sada K, Matsumoto K, Saegusa T, Macromolecules, 23, 1234 (1990) 
  20. Nieto JL, Baselga J, Hernandez-Fuentes I, Uorente MA, Dierola IF, Eur. Polym. J., 23, 551 (1987) 
  21. Chapiro A, Legris C, Eur. Polym. J., 25, 305 (1989) 
  22. Hsu TO, Cohen C, Polymer, 25, 1419 (1984) 
  23. Gaunou Y, Hild G, Rempp P, Macromolecules, 17, 945 (1984) 
  24. Katayama S, J. Phys. Chem., 96, 5209 (1992) 
  25. Andreopoulos AG, J. Appl. Polym. Sci., 37, 2121 (1989) 
  26. Miller AG, Macklin JW, Anal. Chem., 55, 684 (1983) 
  27. Schosseler F, Flmain F, Candau SJ, Macromolecules, 24, 225 (1991) 
  28. Tong Z, Liu XX, Macromolecules, 27(3), 844 (1994) 
  29. Kou JH, Amidon GL, Proc. ACS Div. Polym. Master., 53, 158 (1990)
  30. Gehrke SH, Cussler EL, Chem. Eng. Sci., 44, 559 (1989) 
  31. Grignoon J, Scallan AM, J. Appl. Polym. Sci., 25, 2829 (1980) 
  32. Katchalsky A, Spitnik P, J. Polym. Sci., 2(4), 432 (1947)