화학공학소재연구정보센터
International Journal of Multiphase Flow, Vol.83, 27-38, 2016
The relation between the high speed submerged cavitating jet behaviour and the cavitation erosion process
In order to accurately and reliably evaluate the cavitation erosion resistance of materials using a cavitating jet generator, the effects of the hydrodynamic parameters and the nozzle geometry on the erosion process were investigated. Since the behaviour of a high speed submerged cavitating jet is also depending on the working conditions; their influence is also discussed based on the evaluation of cavitation erosion process. The erosion rate was used as an indicator for cavitating jet behaviour. Specimens of commercial purity copper were subjected to high speed submerged cavitating jets under different initial conditions, for certain time periods. The force generated by jet cavitation is employed to initiate the erosion in surface. The tested specimens were investigated with a digital optical microscope and a profilometer. It was found that erosion becomes more pronounced with decreasing cavitation numbers, as well as with increasing exit jet velocities. The nozzle configuration and hydrodynamic parameters have strong influences on the erosion rate, eroded area and depth of erosion. A comparison between the obtained results explains some of the mechanisms involved in cavitation and erosion processes and their relation to the tested parameters. Mathematical expressions which combine these parameters with the erosion rate are obtained. These parameters are very important in order to control the cavitation as a phenomenon and also to control the performance of the cavitating jet generator. (C) 2016 Elsevier Ltd. All rights reserved.