- Previous Article
- Next Article
- Table of Contents
Journal of Bioscience and Bioengineering, Vol.122, No.1, 1-9, 2016
Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments
Escherichia coli, one of the well-characterized prokaryotes, has been the most widely used bacterial host in scientific studies and industrial applications. Many different strains have been developed for the widespread use of E. coli in biotechnology, and selecting an ideal host to produce a specific protein of interest is a critical step in developing a production process. The E. coli B and K-12 strains are among the most frequently used bacterial hosts for the production of recombinant proteins as well as small-molecule metabolites such as amino acids, biofuels, carboxylic acids, diamines, and others. However, both strains have distinctive differences in genotypic and phenotypic attributes, and their behaviors can still be unpredictable at times, especially while expressing a recombinant protein. Therefore, in this review, an in-depth analysis of the physiological behavior on the proteomic level was performed, wherein the particularly distinct proteomic differences between the E. coli B and K-12 strains were investigated in the four distinctive cellular compartments. Interesting differences in the proteins associated with key cellular properties including cell growth, protein production and quality, cellular tolerance, and motility were observed between the two representative strains. The resulting enhancement of knowledge regarding host physiology that is summarized herein is expected to contribute to the acceleration of strain improvements and optimization for biotechnology-related processes. (C) 2015 The Society for Biotechnology, Japan. All rights reserved.
Keywords:Escherichia coli proteome;Comparative proteome;Physiological difference;Subcellular compartment;Biotechnology