화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.28, No.3, 207-216, August, 2016
The effect of thixotropy on a rising gas bubble: A numerical study
E-mail:
The deformation of a single, two-dimensional, circular gas bubble rising in an otherwise stationary thixotropic liquid in a confined rectangular vessel is numerically studied using the smoothed particle hydrodynamics method (SPH). The thixotropic liquid surrounding the bubble is assumed to obey the Moore model. The main objective of the work is to investigate the effect of the destruction-to-rebuild ratio (referred to by the thixotropy number in dimensionless form) in this model on the bubble's shape, velocity, and center-ofmass during its rise in the liquid. Based on the numerical results obtained in this work, it is found that the bubble moves faster in the Moore fluid as compared with its Newtonian counterpart. An increase in the thixotropy number is also shown to increase the bubble's speed at any given instant of time. The effect of thixotropy number is found to be noticeable only when it is large. For Moore fluid, a large thixotropy number means that the fluid is basically a shear-thinning fluid. Therefore, it is concluded that the shear-thinning behavior of the Moore model easily masks its thixotropic behavior in the bubble rise problem. The effect of thixotropy number is weakened when the Reynolds number is increased.
  1. Ahmadpour A, Amini-Kafiabad H, Sadeghy K, Nihon Reoroji Gakkaishi, 41, 309 (2013)
  2. Ahmadpour A, Amini-Kafiabad H, Samadi J, Sadeghy K, Nihon Reoroji Gakkaishi, 39, 113 (2011)
  3. Astarita G, Apuzzo G, AIChE J., 11, 815 (1965)
  4. Cheng DCH, Evans F, Brit. J. Appl. Phys., 16, 1599 (1965)
  5. Chhabra RP, 1993, Bubbles, Drops, and Particles in non-Newtonian Fluids, CRC Press, Boca Raton.
  6. Clift R, Grace JR, Weber ME, 1978, Bubbles, Drops and Particles, Academic Press, New York.
  7. Mendes PRD, J. Non-Newton. Fluid Mech., 164(1-3), 66 (2009)
  8. Derksen JJ, Prashant, J. Non-Newton. Fluid Mech., 160(2-3), 65 (2009)
  9. Dimakopoulos Y, Pavlidis M, Tsamopoulos J, J. Non-Newton. Fluid Mech., 200, 34 (2013)
  10. Dullaert K, Mewis J, J. Non-Newton. Fluid Mech., 139(1-2), 21 (2006)
  11. Escudier MP, Gouldson IW, Jones DM, Proc. R. Soc. A-Math. Phys. Eng. Sci., 449, 155 (1995)
  12. Fraggedakis D, Pavlidis M, Dimakopoulos Y, Tsamopoulos J, J. Fluid Mech., 789, 310 (2016)
  13. Gueslin B, Talini L, Herzhaft B, Peysson Y, Allain C, Phys. Fluids, 18, 103101 (2006)
  14. Hassager O, Nature, 279, 402 (1979)
  15. Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L, Int. J. Numer. Methods Fluids, 60, 1259 (2009)
  16. Krishna R, van Baten JM, Nature, 398, 208 (1999)
  17. Kulkarni AA, Joshi JB, Ind. Eng. Chem. Res., 44(16), 5873 (2005)
  18. Liu GR, Liu MB, 2003, Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific Publishing, Singapore.
  19. Magnaudet J, Eames I, Annu. Rev. Fluid Mech., 32, 659 (2000)
  20. Mendes R, Vinay G, Ovarlez G, Coussot P, J. Rheol., 59(3), 703 (2015)
  21. Monaghan JJ, Comput. Phys. Commun., 48, 89 (1988)
  22. Moore F, T. Brit. Ceram. Soc., 58, 470 (1959)
  23. Mujumdar A, Beris AN, Metzner AB, J. Non-Newton. Fluid Mech., 102(2), 157 (2002)
  24. Pillapakkam SB, Singh P, Blackmore D, Aubry N, J. Fluid Mech., 589, 215 (2007)
  25. Pilz C, Brenn G, J. Non-Newton. Fluid Mech., 145(2-3), 124 (2007)
  26. Salehi-Shabestari, A, Ahmadpour A, Raisee M, Sadeghy K, J. Non-Newton. Fluid Mech., 235, 47 (2016)
  27. Sikorski D, Tabuteau H, de Bruyn JR, J. Non-Newton. Fluid Mech., 159(1-3), 10 (2009)
  28. Sussman M, Smereka P, Osher S, J. Comput. Phys., 114, 146 (1994)
  29. Tehrani A, 2008, Thixotropy in water-based drilling fluids, Annual Transactions of the Nordic Rheology Society, Copenhagen, Denmark, 16.
  30. Tsamopoulos J, Dimakopoulos Y, Chatzidai N, Karapetsas G, Pavlidis M, J. Fluid Mech., 601, 123 (2008)
  31. Vahabi M, Sadeghy K, Nihon Reoroji Gakkaishi, 41, 319 (2013)
  32. Vahabi M, Sadeghy K, Nihon Reoroji Gakkaishi, 42, 309 (2014)
  33. Vahabi M, 2015, Simulating Bubble Shape during its Rise in Thixotropic Fluids, Ph.D Thesis, University of Tehran.
  34. Zhang L, Yang C, Mao ZS, J. Non-Newton. Fluid Mech., 165(11-12), 555 (2010)