화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.9, 2589-2601, September, 2016
Physico-chemical study of dew melon peel biochar for chromium attenuation from simulated and actual wastewaters
E-mail:
This work introduces a biochar as novel adsorbent prepared from the dew melon peel by pyrolysis method, and demonstrates its potential for eliminating Cr(VI) from simulated and actual wastewaters. The dew melon peel biochar (DPB) was characterized by several techniques and methodologies such as, BET, SEM, FTIR, Boehm titration, ultimate analysis, and pHzpc. DPB is a microporous material with the BET specific surface area of 196m2/g. The effects of different parameters including pH, amount of adsorbent, Cr(VI) concentration, and mixing time on the removal of Cr(VI) from wastewater were studied. Maximum adsorption (98.6%) was observed at pH 6 and 100mg/L metal concentration. The equilibrium adsorption was analyzed by Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. Kinetic data were evaluated by pseudo-first order, pseudo-second order, intraparticle diffusion, film diffusion (Boyd), Elovich, and Avrami models. The kinetic data were best fitted to the pseudo-second order model. The Langmuir isotherm model gives the better correlation to predict the adsorption equilibrium, with a maximum adsorption capacity of 198.7mg/g. The thermodynamic parameters showed that the adsorption of Cr(VI) was endothermic and spontaneous. Competition between the co-existing ions of Cl-, NO3-, SO4 2-, PO4 3-, and HCO-3 on the adsorption process was studied. The efficacy of DPB was successfully examined by analyzing the removal of Cr(VI) from two industrial wastewaters. The results indicate that DPB is promising as an effective and economical adsorbent for Cr(VI) ions removal and could be repeatedly used with no significant loss of adsorption efficiency.
  1. Asgari G, Ramavandi B, Rasuli L, Ahmadi M, Desal. Water Treat., 51, 6009 (2013)
  2. Giraldo-Gutierrez L, Moreno-Pirajan JC, J. Anal. Appl. Pyrolysis, 81, 278 (2008)
  3. Moussavi G, Barikbin B, Chem. Eng. J., 162(3), 893 (2010)
  4. Deveci H, Kar Y, J. Ind. Eng. Chem., 19(1), 190 (2013)
  5. Kumar R, Ehsan M, Barakat MA, J. Ind. Eng. Chem., 20(6), 4202 (2014)
  6. Gao H, Liu Y, Zeng G, Xu W, Li T, Xia W, J. Hazard. Mater., 150, 446 (2008)
  7. Malkoc E, Nuhoglu Y, Chem. Eng. Process., 46(10), 1020 (2007)
  8. Hamdan SS, El-Naas MH, J. Ind. Eng. Chem., 20(5), 2775 (2014)
  9. Gupta VK, Rastogi A, Nayak A, J. Colloid Interface Sci., 342(1), 135 (2010)
  10. Ghosh PK, J. Hazard. Mater., 171(1-3), 116 (2009)
  11. Di Natale F, Erto A, Lancia A, Musrnarra D, J. Hazard. Mater., 281, 47 (2015)
  12. Memon JR, Memon SQ, Bhanger MI, El-Turki A, Hallam KR, Allen GC, Colloids Surf. B: Biointerfaces, 70, 232 (2009)
  13. Acar FN, Malkoc E, Bioresour. Technol., 94(1), 13 (2004)
  14. Sumathi KMS, Mahimairaja S, Naidu R, Bioresour. Technol., 96(3), 309 (2005)
  15. Oliveira EA, Montanher SF, Andrade AD, Nobrega JA, Rollemberg MC, Process Biochem., 40(11), 3485 (2005)
  16. Agarwal GS, Bhuptawat HK, Chaudhari S, Bioresour. Technol., 97(7), 949 (2006)
  17. Elangovan R, Philip L, Chandraraj K, Chem. Eng. J., 141(1-3), 99 (2008)
  18. Basha S, Murthy ZVP, Jha B, Chem. Eng. J., 137(3), 480 (2008)
  19. Levankumar L, Muthukumaran V, Gobinath MB, J. Hazard. Mater., 161(2-3), 709 (2009)
  20. Chand R, Narimura K, Kawakita H, Ohto K, Watari T, Inoue K, J. Hazard. Mater., 163(1), 245 (2009)
  21. Tewari N, Vasudevan P, Guha BK, Biochem. Eng. J., 23, 185 (2005)
  22. Gupta S, Babu BV, J. Environ. Manage., 90, 3013 (2009)
  23. Mthombeni NH, Onyango MS, Aoyi O, J. Taiwan Inst. Chem. Eng., (In Press)
  24. Sun YY, Yue QY, Gao BY, Gao Y, Li Q, Wang Y, Chem. Eng. J., 217, 240 (2013)
  25. Bulut Y, Tez Z, J. Environ. Sci., 19, 160 (2007)
  26. Sud D, Mahajan G, Kaur MP, Bioresour. Technol., 99(14), 6017 (2008)
  27. Marin ABP, Ortuno JF, Aguilar MI, Meseguer VF, Saez J, Llorens M, Biochem. Eng. J., 53, 2 (2010)
  28. El-Sheikh AH, Abu Hilal MM, Sweileh JA, Bioresour. Technol., 102(10), 5749 (2011)
  29. Tarley CR, Arruda MA, Chemosphere, 54, 987 (2004)
  30. Ucun H, Bayhan YK, Kaya Y, J. Hazard. Mater., 153(1-2), 52 (2008)
  31. Sreenivas KM, Inarkar MB, Gokhale SV, Lele SS, J. Environ. Chem. Eng., 2, 455 (2014)
  32. Blazquez G, Hernainz F, Calero M, Martin-Lara MA, Tenorio G, Chem. Eng. J., 148(2-3), 473 (2009)
  33. Lester GE, Hodges DM, Postharvest Biol. Technol., 48, 347 (2008)
  34. Saltveit ME, in Postharvest Biology and Technology of Tropical and Subtropical Fruits, Ed. Yahia EM, Woodhead Publishing, 31 (2011).
  35. Ramavandi B, Water Res. Ind., 6, 36 (2014)
  36. Asgari G, Ramavandi B, Farjadfard S, ScientificWorldJournal, 2013, 1 (2013)
  37. Ramavandi B, Asgari G, Faradmal J, Sahebi S, Roshani B, Korean J. Chem. Eng., 31(12), 2207 (2014)
  38. Eaton AD, Franson MAH, Association APH, Association AWW, Federation WE, Standard Methods for the Examination of Water & Wastewater, American Public Health Association (2005).
  39. Ponce SC, Prado C, Pagano E, Prado FE, Rosa M, Ecol. Eng., 74, 33 (2015)
  40. Dahbi S, Azzi M, de la Guardia M, Fresenius J. Anal. Chem., 363, 404 (1999)
  41. Schmidt MWI, Noack AG, Glob. Biogeochem. Cy., 14, 777 (2000)
  42. Ghani WAWAK, Mohd A, da Silva G, Bachmann RT, Taufiq-Yap YH, Rashid U, Al-Muhtaseb AAH, Ind. Crop. Prod., 44, 18 (2013)
  43. Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman ARA, Bioresour. Technol., 131, 374 (2013)
  44. Broderick E, Lyons H, Pembroke T, Byrne H, Murray B, Hall M, J. Colloid Interface Sci., 298(1), 154 (2006)
  45. Chen JH, Xing HT, Guo HX, Li GP, Weng W, Hu SR, J. Hazard. Mater., 248-249, 285 (2013)
  46. Samuel J, Pulimi M, Paul ML, Maurya A, Chandrasekaran N, Mukherjee A, Bioresour. Technol., 128, 423 (2013)
  47. Fida HS, Guo S, Zhang G, J. Colloid Interface Sci., 442, 30 (2015)
  48. Bansal M, Singh D, Garg VK, J. Hazard. Mater., 171(1-3), 83 (2009)
  49. Bansal M, Garg U, Singh D, Garg VK, J. Hazard. Mater., 162(1), 312 (2009)
  50. Wang XS, Li ZZ, Tao SR, J. Environ. Manage., 90, 721 (2009)
  51. Rao M, Parwate AV, Bhole AG, Waste Manage., 22, 821 (2002)
  52. Wang LH, Lin CI, J. Taiwan Inst. Chem. Eng., 40, 110 (2009)
  53. Bouhamed F, Elouear Z, Bouzid J, J. Taiwan Inst. Chem. Eng., 43, 741 (2012)
  54. Wan Z, Chen W, Liu C, Liu Y, Dong CL, J. Colloid Interface Sci., 443, 115 (2015)
  55. Karthik R, Meenakshi S, Inter. J. Biol. Macromol., 72, 711 (2015)
  56. Chen JH, Li GP, Liu QL, Ni JC, Wu WB, Lin JM, Chem. Eng. J., 165(2), 465 (2010)
  57. Asgari G, Ramavandi B, Sahebi S, Desal. Water Treat., 52, 7354 (2013)
  58. Chang YM, Tsai WT, Li MH, J. Anal. Appl. Pyrolysis, 111, 88 (2015)
  59. Sepehr MN, Amrane A, Karimaian KA, Zarrabi M, Ghaffari HR, J. Taiwan Inst. Chem. Eng., 45, 635 (2014)
  60. Moussavi G, Khosravi R, J. Hazard. Mater., 183(1-3), 724 (2010)
  61. Martins AC, Pezoti O, Cazetta AL, Bedin KC, Yamazaki DAS, Bandoch GFG, Asefa T, Visentainer JV, Almeida VC, Chem. Eng. J., 260, 291 (2015)
  62. Wu FC, Tseng RL, Juang RS, J. Colloid Interface Sci., 283(1), 49 (2005)
  63. Hameed BH, Tan IAW, Ahmad AL, Chem. Eng. J., 144(2), 235 (2008)
  64. Baral A, Engelken RD, Environ. Sci. Policy, 5, 121 (2002)