화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.9, 2691-2698, September, 2016
Characterization of the bio-oil and bio-char produced by fixed bed pyrolysis of the brown alga Saccharina japonica
E-mail:
Brown alga Saccharina japonica was pyrolyzed in a fixed bed reactor under conditions intended to maximize the yield of bio-oil and bio-char. The results revealed that the product distribution of bio-oil, bio-char, and gas was considerably influenced by the pyrolysis temperature (430-530 ℃) and holding time (4-10min). The maximum yields of bio-oil and bio-char were approximately 48.4 and 32.3wt%, respectively, when prepared at 450 oC for 8min with a carrier gas flow rate of 2.2 cm/s. The fuel properties of dewatered S. japonica bio-oil (DSB) included higher heating value (HHV), kinematic viscosity, density, moisture and ash content, pH, and flash and pour point. The possibility of blending 5-20 vol% DSB with No. 6 fuel oil (Bunker C oil) was also examined. The physicochemical properties of the bio-char exhibited decreased carbon and HHV, and increased inorganic elements and surface area, with increasing pyrolysis temperature.
  1. Gao K, McKinley KR, J. Appl. Phycol., 6, 45 (1994)
  2. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y, Macroalgae as a biomass feedstock: A preliminary analysis, Pacific Northwest National Laboratory, Report No.: PNNL-19944, Sponsored by the US Department of Energy (2010).
  3. Wei N, Quarterman J, Jin YS, Trends Biotechnol., 31, 70 (2013)
  4. Bixler HJ, Porse H, J. Appl. Phycol., 23, 321 (2011)
  5. Jiao G, Yu G, Zhang J, Ewart HS, Mar. Drugs, 9, 196 (2011)
  6. Sivagnanam S, Yin S, Choi JH, Park YB, Woo HC, Chun BS, Mar. Drugs, 13, 3422 (2015)
  7. FAO Yearbook 2010: Fishery and Aquaculture Statistics, Food and Agriculture Organization of the United Nations (FAO), 2012. [Online]. Available: ftp://ftp.fao.org/FI/CDrom/CD_yearbook_2010/booklet/ba0058t.pdf. [Accessed: 05 January 2015].
  8. Jung KA, Lim SR, Kim Y, Park JM, Bioresour. Technol., 135, 182 (2013)
  9. Song M, Pham HD, Seon J, Woo HC, Renew. Sust. Energ. Rev., 50, 782 (2015)
  10. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y, Science, 335(6066), 308 (2012)
  11. Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi , Nature, 505(7482), 239 (2014)
  12. Pham TN, Nam WJ, Jeon YJ, Yoon HH, Bioresour. Technol., 124, 500 (2012)
  13. Song M, Pham HD, Seon J, Woo HC, Korean J. Chem. Eng., 32(4), 567 (2015)
  14. Ross AB, Jones JM, Kubacki ML, Bridgeman T, Bioresour. Technol., 99(14), 6494 (2008)
  15. Anastasakis K, Ross AB, Jones JM, Fuel, 90(2), 598 (2011)
  16. Bae YJ, Ryu C, Jeon JK, Park J, Suh DJ, Suh YW, Chang D, Park YK, Bioresour. Technol., 102(3), 3512 (2011)
  17. Kim SS, Ly HV, Choi GH, Kim J, Woo HC, Bioresour. Technol., 123, 445 (2012)
  18. Wang S, Wang Q, Jiang XM, Han XX, Ji HS, Energy Conv. Manag., 68, 273 (2013)
  19. Choi J, Choi JW, Suh DJ, Ha JM, Hwang JW, Jung HW, Lee KY, Woo HC, Energy Conv. Manag., 86, 371 (2014)
  20. Xiu S, Shahbazi A, Renew. Sust. Energ. Rev., 16, 4406 (2012)
  21. Trinh TN, Jensen PA, Dam-Johansen K, Knudsen NO, Sorensen HR, Hvilsted S, Energy Fuels, 27, 1399 (2013)
  22. Zhang Q, Chang J, Wang TJ, Xu Y, Energy Conv. Manag., 48(1), 87 (2007)
  23. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
  24. Bridgwater AV, Peacocke GVC, Renew. Sust. Energ. Rev., 4, 1 (2000)
  25. Brammer JG, Bridgwater AV, Renew. Sust. Energ. Rev., 3, 243 (1999)
  26. Channiwala SA, Parikh PP, Fuel, 81(8), 1051 (2002)
  27. Fahmi R, Bridgwater A, Donnison I, Yates N, Jones JM, Fuel, 87(7), 1230 (2008)
  28. Hwang H, Oh S, Cho TS, Choi IG, Choi JW, Bioresour. Technol., 150, 359 (2013)
  29. Bridgwater AV, Biomass Bioenerg., 38, 68 (2012)
  30. Ayllon M, Aznar M, Sanchez JL, Gea G, Arauzo J, Chem. Eng. J., 121(2-3), 85 (2006)
  31. Weerachanchai P, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 28(12), 2262 (2011)
  32. Maggi R, Delmon B, Fuel, 73, 671 (1994)
  33. Choi JW, Choi JH, Suh DJ, Kim H, J. Anal. Appl. Pyrolysis, 112, 141 (2015)
  34. Lu Q, Li WZ, Zhu XF, Energy Conv. Manag., 50(5), 1376 (2009)
  35. Oasmaa A, Czernik S, Energy Fuels, 13(4), 914 (1999)
  36. Chiaramonti D, Oasmaa A, Solantausta Y, Renew. Sust. Energ. Rev., 11, 1056 (2007)
  37. Lehto J, Oasmaa A, Solantausta Y, Kyto M, Chiaramonti D, Appl. Energy, 116, 178 (2014)
  38. Zheng JL, Wei Q, Biomass Bioenerg., 35(5), 1804 (2011)
  39. Czernik S, Bridgwater AV, Energy Fuels, 18(2), 590 (2004)
  40. Antal MJ, Gronli M, Ind. Eng. Chem. Res., 42(8), 1619 (2003)
  41. Bird MI, Wurster CM, Silva PHD, Bass AM, de Nys R, Bioresour. Technol., 102(2), 1886 (2011)
  42. Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T, Environ. Pollut., 159, 3269 (2011)
  43. Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Bolan NS, Pei J, Huang H, Environ. Sci. Pollut. Res., 20, 8472 (2013)
  44. Lehmann J, Nature, 447, 143 (2007)