화학공학소재연구정보센터
Polymer(Korea), Vol.22, No.6, 999-1006, November, 1998
조직 흡착 및 세포점착 방지의 양쪽특성을 갖는 Polylysine-PEG 공중합체 차단제
Polylysine-PEG Copolymer Barriers with Dual Character of both Adsorption to Tissue and Prevention of Cell Adhesion
초록
Biosurfactants와 같은 표면활성제로 사용할 수 있는 양쪽특성을 갖는 생체적합성 차단제를 제조하였다. 즉, 양이온성 polylysine(PL)과 비이온성 poly(ethylene glycol)(PEG)을 반응하여 블록 공중합체인 PL-b-PEG와 그라프트 공중합체인 poly-L-lysine(PLL)-g-PEG를 각각 합성하였다. 특히 PL-b-PEG 블록 공중합체는 활성화된 succinimidyl ester of carboxymethylated MPEG(SCM-MPEG)와 한쪽 아민기가 보호된 poly-ε-CBZ-lysine(PLZ)을 이용하여 새로운 방법으로 합성하였다. 양이온성 PL은 세포나 조직의 표면에 잘 흡착하고 반면에 비이온성 PEG는 오히려 그 표면과 반대방향으로 배열하여 세포나 조직의 점착을 방지할 수 있다. 반응 중간체와 공중합체의 화학적 구조는 1H NMR, 적정법 및 UV로 확인하였다. 자기회합하는 PLL-g-PEG 공중합체는 결합된 PEG의 비점착 특성과 사슬 유동성 때문에 섬유아세포(HFFs) 및 적혈구(RBCs)의 점착을 상당히 감소시켰으나 PL-b-PEG는 점착을 거의 막지 못하였다. 따라서 세포-조직의 상호작용을 방지하는데 있어서 블록 공중합체보다는 그라프트 공중합체가 더 바람직한 것으로 사료된다.
The biocompatible barriers with dual character for surface active agents like biosurfactants were made by reacting cationic polylysine(PL) with nonionic poly(ethylene glycol) (PEG) to give block and graft PL-PEG copolymers, PL-b-PEG and poly-L-lysine (PLL)-g-PEG. In particular, PL-b-PEG block copolymers were synthesized by a new method using an activated succinimidyl ester of carboxymethylated MPEG(SCM-MPEG) and a blocked poly-ε-CBZ-lysine (PLZ). One component, FL, adsorbs to a cell or a tissue surface, and the other, PEG, which has no strong interaction with the surface, dangles away from it, thus blocks the adhesion of the cells or tissues to the surface. The chemical structures of the intermediates and copolymers were confirmed by 1H NMR, titration, and UV. The self-assembling PLL-g-PEG copolymers significantly reduced. the adhesion of human foreskin fibroblasts (HFFs) and red blood cells (RBCs) due to the nonadhesive property and chain mobility of PEG attached, whereas PL-b-PEG did not. It, therefore, suggests that graft copolymers are more desirable than block ones in prevention of cell-tissue interactions.
  1. Slepian MJ, Hubbell JA, Adv. Drug Delivery Rev., 24, 11 (1997) 
  2. Hubbell JA, Elbert DL, Hill-West JL, Drumheller PD, Chowdhury SM, Sawhney AS, U.S. Patent, 5,462,990 (1995)
  3. Napper DH, "Polymeric Stabilization of Colloidal Dispersions," Academic Press, London (1983)
  4. Singh AK, Kasinath BS, Lewis EJ, Biochim. Biophys. Acta, 1120, 337 (1992)
  5. Moroson H, Rotman M, "Polyelectrolytes and Their Applications," eds. by A. Rembaum and E. Selegny, p. 187, Reidel, Dordrecht, Holland (1975)
  6. Harris JM, "Poly(ethylene glycol) Chemistry Biotechnical and Biomedical Applications," Plenum, New York (1992)
  7. Han DK, Jeong SY, Kim YH, Min BG, Cho HI, J. Biomed. Mater. Res., 25, 561 (1991) 
  8. Han DK, Park KD, Hubbell JA, Kim YH, J. Biomater. Sci.-Polym. Ed., 9, 667 (1998)
  9. Jakubauskas HL, J. Coat. Technol., 58, 71 (1986)
  10. Elbert DL, Ph.D. Dissertation, Univ. of Texas, Austin (1997)
  11. Sawhney AS, Hubbell JA, Biomaterials, 13, 863 (1992) 
  12. Zalipsky S, Bioconjugate Chem., 6, 150 (1995) 
  13. Harris JM, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C25, 325 (1984)
  14. Beauchamp CH, Gonias SL, Menapace DP, Pizzo SV, Anal. Biochem., 131, 25 (1983) 
  15. Nilsson K, Mosbach K, "Methods in Enzymology," ed. by W.B. Jakoby, Vol. 104, p. 56, Academic Press, Orlando (1984)
  16. Veronese FM, Caliceti P, Pastorino A, Schiavon O, Sartore L, Banci L, Scolaro LM, J. Control. Release, 10, 145 (1989) 
  17. Sigma Catalogue, p. 1968 (1997)
  18. Elbert DL, Hubbell JA, Chem. Biol., 5, 177 (1998)