화학공학소재연구정보센터
Powder Technology, Vol.299, 178-184, 2016
Hollow Si/C composite as anode material for high performance lithium-ion battery
A modified Stober/Mg-thermal reduction combination method was utilized to fabricate hollow silicon. Hollow silicon/graphite/pyrolytic carbon (H-Si/C) composite was prepared by using the as-obtained hollow silicon, graphite and phenolic resin as raw materials. The hollow structure and pyrolytic carbon accommodates the large volumetric change of silicon during cycle process. As an anode material, the obtained composite shows excellent performance. Under current density of 100 mA g(-1), the H-Si/C composite exhibits an initial capacity of 470 mAh g(-1), with an initial coulombic efficiency of 71.4%, the charge capacity after 50 cycles of the composite can remain as high as 554 mAh g(-1), and the reversible specific capacity has little decay in last 25 cycles. The H-Si/C composite carbon composite could be used as a promising anode material for lithium ion batteries. (C) 2016 Elsevier B.V. All rights reserved.