화학공학소재연구정보센터
Polymer(Korea), Vol.23, No.1, 1-7, January, 1999
내열성 이온교환막 제조를 위한 용해성 PAES/PEES 공중합체의 합성과 특성
The Synthesis and Characteristics of Soluble PAES/PEES Copolymers for Heat Resistant Ion Exchange Membrane
초록
중금속이온의 분리능을 갖는 내열성 이온교환막의 절전구체를 제조하기 위해 열적, 기계적 성질 및 화학 안정성이 우수한 poly(arylene ether sulfone)/poly(ether ether sulfone), (PAES/PEES) 공중합체를 합성하였다. 질소분위기 하에서 dimethylacetamide (DAMc)를 용매로. 일정한 양의 4,4`-dichlorodiphenysulfone에 bisphenol-A와 hydroquinone의 몰비변화에 따른 축합중합반응을 통해 흰색의 섬유상의 PAES/PEES 공중합체를 합성하였다. 합성된 공중합체는 chlorosulfonic acid와의 술폰화 반응을 통해서 술폰화 반응을 통해서 슬폰기가 도입되었다. 합성된 공중합체는 FT-IR 스펙트럼 및 ¹H-NNR 스펙트럼 분석으로 그 구조 및 술폰화가 확인되었다. 또한 공중합체의 내열성을 확인한 결과, 술폰화를 통해서 열중량감소율은 현저히 감소하고, 유리전이온도는 증가함을 알 수 있었다. 한편 PAES/PEES는 금속혼합용액에서 Cu2+의 금속이온에 대해 가장 우수한 흡착능을 나타냈고, pH가 6일 때 초대의 흡착량을 나타내었다.
The poly(arylene ether sulfone)/poly(ether ether sulfone) (PAES/PEES)copolymers were synthesized to obtain the precursors for ion exchange membrane with thermal stability and adsorption capacity of metal ions. PAES/PEES copolymers were prepared by the condensation polymerization of bisphenol-A, hydroquinone and dichlorodiphenylsulfone in dimethylacetamide (DMAc), changing the molar ratio of these monomers. After the synthesis was completed. these copolymers were sulfonated with chlorsulfonic acid. The sulfonation was confirmed by the bands of O=S=O adsorption of SO3Na group at 1152 cm-1 and S-C vibration at 624-710 cm-1 by FT-IR spectra. According to the results of TGA, the weight loss of sulfonated PAES/PEES copolymers was less than unmodified PAES/PEES copolymers. The sulfonated PAES/PEES copoymetrs had a good adsorption capacity for Cu2+ ion and pH 6, expecially.
  1. Hedrick JL, Mohanty DK, Johnson BC, Viswanathan R, Hinkley JA, McGrath JE, J. Polym. Sci. A: Polym. Chem., 23 (1986)
  2. Anmed IK, Walker N, Parsons IW, Haward RN, J. Appl. Polym. Sci., 25, 821 (1980) 
  3. Rose JB, Polymer, 15, 456 (1974) 
  4. Johnson BC, Yilgor I, Tran C, Iqbal M, Wightman JP, Lloyad DR, McGrath JE, J. Polym. Sci. A: Polym. Chem., 22, 721 (1984)
  5. Nolte R, Ledjeff K, Bauer M, Mulhaupt R, J. Membr. Sci., 83, 211 (1993) 
  6. Turner JC, Meares P, Weldon KA, Ind. Eng. Chem. Res., 34(8), 2817 (1995) 
  7. Naik HA, Parsons IW, McGrail PT, MacKenzie PD, Polymer, 32, 140 (1991) 
  8. Alomran A, Rose JB, Polymer, 37(9), 1735 (1996) 
  9. Noshay A, Robeson LM, J. Appl. Polym. Sci., 20, 1885 (1976) 
  10. Viswanathan R, Johnson BC, McGrath JE, Polymer, 25, 1827 (1984) 
  11. Rose JB, Letchworth, U.S. Patent, 4,273,903 (1979)
  12. Harris JE, Maresca LM, U.S. Patent, 4,785,072 (1988)
  13. Robeson LM, Maresca LM, U.S. Patent, 4,939,228 (1990)
  14. Johnson RN, Farnham AG, J. Polym. Sci., 5, 2415 (1967)
  15. Johnson RN, Farnham AG, Clendinning RA, Hale WF, Merriam CN, J. Polym. Sci., 5, 2375 (1967)
  16. Hale WF, Farnham AG, Johnson RN, Clendinning RA, J. Polym. Sci., 5, 2399 (1967)
  17. Coplan MJ, Gotz G, U.S. Patent, 4,413,106 (1983)
  18. Denjamin B, U.S. Patent, 4,508,852 (1983)
  19. Ueda T, Toyota H, Ouchi T, Sugiyama JI, Yonetake T, Masuco T,Teramato T, J. Polym. Sci. A: Polym. Chem., 31, 853 (1993) 
  20. Kobayashi H, Saito T, U.S. Patent, 449,666 (1995)
  21. Son WK, Kim YJ, Song HY, Kim DC, Polym.(Korea), 22(3), 345 (1998)